Как происходит подключение к интернет через оптоволокно. Как тянут оптоволоконный кабель Как проложить оптико волоконный кабель

Как происходит подключение к интернет через оптоволокно. Как тянут оптоволоконный кабель Как проложить оптико волоконный кабель
Как происходит подключение к интернет через оптоволокно. Как тянут оптоволоконный кабель Как проложить оптико волоконный кабель

Российские коммуникационные корпорации все более активно внедряют оптоволоконные решения. Это касается, в частности, сегмента B2C, в котором услуги доступа в интернет предоставляются для частных лиц. Граждане, подключившиеся к «оптоволокну», получают возможность выходить в интернет на самых высоких скоростях — в десятки мегабит. Ранее подобная скорость считалась совершенно невероятной. Внедрение оптоволоконных технологий позволяет значительно ускорить также и бизнес-процессы, и потому активными пользователями соответствующих решений становятся коммерческие предприятия. Какова специфика оптоволоконных кабелей как коммуникационного решения? Сколько стоит выстраивание соответствующей инфраструктуры?

Основные преимущества оптоволокна

Оптическое волокно как технология имеет ряд преимуществ в сравнении с традиционными типами кабелей. В числе таковых:

Устойчивость к помехам, электромагнитным полям;

Более высокая пропускная способность;

Небольшая масса и легкость в транспортировке;

Нет необходимости заземлять передатчик сингала и приемник;

Нет коротких замыканий.

Рассматриваемый тип кабелей способен передавать сигнал на очень большие расстояния. Оптическое волокно как ресурс для организации проводных коммуникаций активно стал внедряться в развитых странах в 70-е годы. Сейчас уровень проникновения соответствующих технологий в России — один из самых динамичных в Европе.

Изучим теперь то, какими основными типами представлены оптоволоконные решения.

Классификация оптоволоконных кабелей

Оптическое волокно может применяться для выстраивания инфраструктуры связи:

В рамках телефонных сетей;

Как часть внутризоновых коммуникаций;

В рамках магистральных сетей.

В последнее время оптоволокно также задействуется как инструмент передачи данных на конечных участках абонентских линий. Соответствующие типы кабелей некоторые специалисты выделяют в отдельную категорию. Ранее на таких участках, как правило, задействовались DSL-решения, Ethernet-кабель типа «витая пара». Для современного рынка предоставления доступа в интернет наличие у абонента оптоволоконного модема — обычная практика.

Можно отметить, что на рынке коммуникационных решений также присутствуют гибридные типы кабелей, сочетающие в себе оптоволокно и традиционные материалы.

Особенности практического внедрения оптоволоконных решений

Магистральные кабели используются для передачи данных на большие расстояния. Рассчитаны на одновременное подключение большого количества абонента. Чаще всего при выстраивании подобной инфраструктуры задействуется одномодовое оптическое волокно.

Внутризоновые кабели используются главным образом для обеспечения многоканальной связи на расстояниях в пределах 250 км. В их структура задействуются чаще всего волокна, классифицируемые как градиентные.

Городские кабели используются с целью обеспечения связи между АТС и различными узлами связи. Рассчитаны на передачу данных в пределах 10 км и организацию трансляции при большом количестве каналов. В городских оптоволоконных системах также задействуются, как правило, градиентные волокна.

Выше мы отметили, что в инфраструктуре магистральных кабелей используется чаще всего одномодовое волокно. В чем его специфика и отличие от другого — многомодового?

Одномодовые и многомодовые кабели

Термин «мода» в данном случае — технический. Он обозначает совокупность световых лучей, которые формируют ту или иную интерференционную структуру. Моды самого низкого порядка характеризуются направленностью на поверхность распределения под большим углом. Таковые в единичном количестве пропускают одномодовые кабели. В свою очередь, многомодовое оптическое волокно характеризуется большей величиной световодного канала. Это делает возможным пропускание большого количества мод.

Преимущества одномодовых кабелей

Основное преимущество одномодовых кабелей — уровень сигнала в них, как правило, устойчивее, а скорость передачи данных при одних и тех же объемах ресурса — выше. Есть у соответствующих решений также и недостатки. В частности, одномодовые кабели требуют значительно более мощных, а значит, и дорогих источников излучения, чем те, что применяются с многомодовыми волокнами.

Преимущества многомодового оптоволокна

В свою очередь, кабели второго типа, что рассчитаны на пропускание большого количества мод, характеризуются прежде всего меньшей трудоемкостью монтажа, поскольку размер светопроводящего канала в них больше. Касательно излучателей выше мы отметили, что для многомодовых проводов они, как правило, дешевле. Вместе с тем оптоволоконные решения рассматриваемого типа слабо приспособлены для задействования в магистральных сетях в силу недостаточно высокой пропускной способности.

Структура кабеля

Оптические кабели связи устроены просто. Основа соответствующих элементов — волокна, изготовленные из светопроводящего кварцевого стекла. Данные компоненты заключены в защитную оболочку. В случае необходимости кабель может дополняться иными элементами — с целью придания конструкции большей прочности. Оптическое волокно имеет цилиндрическую форму. Оно рассчитано для передачи сигналов, обладающих длиной волны 0,85-1,6 мкм.

Оптоволокно имеет двухслойную конструкцию. В нем присутствует сердцевина, а также оболочка, имеющие разные характеристики преломления. Первый компонент задействуется для трансляции электромагнитных сигналов. Оболочка призвана защищать канал от внешних помех, а также обеспечивать оптимальные условия отражения светового потока. Сердцевина кабеля изготавливается чаще всего из кварца. Оболочка в ряде случаев может быть полимерной.

Как изготавливается оптоволокно?

Рассмотрим то, каким образом осуществляется промышленный выпуск оптоволокна.

В числе самых распространенных методов производства соответствующего материала — осаждение из газовой фазы посредством химической реакции. Данная процедура реализуется в несколько этапов. На первом изготавливается кварцевая заготовка, на втором — из нее формируется волокно. Данный процесс предполагает использование следующих веществ: хлорированный кварц, кислород, чистый кварц. Рассматриваемый способ производства оптоволокна характеризуется, прежде всего, возможностью обеспечивать высокую химическую чистоту материала. В некоторых случаях на заводе-изготовителе формируются также градиентные волокна с целевыми характеристиками преломления. Их возможно обеспечить за счет использования в ходе изготовления оптоволокна различных присадок — титана, фосфора, германия, бора.

Конструкции кабелей

Итак, мы изучили основные характеристики, которыми обладают оптические волокна, и особенности их изготовления. Рассмотрим теперь варианты конструкционной реализации соответствующих кабелей.

Параметры, определяющие особенности соответствующих конфигураций, зависят от конкретной области применения оптоволокна. При всем многообразии конструкционных подходов выделяют 3 основные категории кабелей:

Концентрической скрутки;

С сердечником фигурной формы;

Плоские ленточного типа.

Оптоволоконные кабели первого типа имеют структуру, в целом схожую с таковой, что свойственна для электрических кабелей. Число волокон в таких решениях чаще всего — 7, 12 или 19. Кабели второго типа имеют, таким образом, сердечник — обычно пластмассовый, в котором размещаются светопроводящие каналы. Содержит данного типа кабель оптический 8 волокон, в ряде случаев - 4, 6 либо 10. Ленточные кабели имеют в своей структуре, соответственно, ленты, которые содержат определенное количество светопроводящих каналов. Как правило — 12, в ряде случаев — 6 или 8. Можно отметить, что в некоторых случаях рассматриваемый показатель, что характеризует кабель оптический — 16 волокон. Данная характеристика может предопределяться стандартами, принятыми в стране, в которой выпущено оптоволокно.

Специфика прокладки оптоволоконных кабелей

Изучим теперь основные особенности, которыми характеризуется прокладка оптического волокна. Специалисты рекомендуют придерживаться следующих основных правил при решении соответствующей задачи:

Необходимо убедиться, что радиус кабеля больше, чем требуемый минимальный, что установлен для изгиба;

Следует избегать использования каналов либо лотков с острыми краями;

Укладывать кабели следует на плоскую поверхность;

По возможности не следует соединять кабели под углом 90 градусов;

Нужно избегать скручивания провода.

Минимальный радиус изгиба обычно фиксируется в технических характеристиках кабеля, предоставляемых его фирмой-изготовителем. Специалисты в ходе монтажа рекомендуют придерживаться правила: оптоволокно с диаметром не более 2 см не должно выходить за минимальный радиус, если он не будет превышать 30 см.

Инструменты для прокладки кабелей

Для прокладки кабелей, о которых идет речь, потребуются различные инструменты. В числе таковых — скалыватель оптического волокна. Предназначен он для подготовки соответствующих материалов к сварке. Ее сущность в соединении светопроводящих элементов двух разных проводов за счет высокотемпературной обработки. Сварка оптического волокна также требует задействования специального аппарата.

Сколько стоит внедрение оптоволокна?

Ранее была популярна точка зрения, что монтаж оптоволоконных кабелей — дело не слишком рентабельное в силу высокой стоимости самих светопроводящих носителей, а также работ по их монтажу. Подобный тезис, вероятно, был актуален на тот период развития рынка, когда не предполагалось в достаточной мере высокого спроса на соответствующие коммуникации. Сейчас, как мы отметили выше — оптическое волокно уже не редкость для рядовых абонентов городских сетей.

Но сколько же стоит внедрение решений, о которых идет речь? Очень многое зависит от конкретных типов проводов. Более того, установленная производителем на то или иное волокно (оптический кабель) цена — весьма поверхностный критерий издержек, связанных с внедрением соответствующей инфраструктуры. Очень важно рассматривать ее в сочетании с трудовыми затратами и потребностями в иных ресурсах, что необходимы для прокладки оптоволоконной сети. Таким образом, мы попробуем оценить то, сколько будет внедрить соответствующие решения с учетом совокупных затрат — не только на оптическое волокно, цена которого, как мы отметили выше, может значительно варьироваться, но также на привлечение специалистов для монтажа кабелей и закупку иных необходимых компонентов инфраструктуры, о которой идет речь.

Выше мы классифицировали оптоволоконные решения, исходя из такого критерия как масштабы сетей. Так, если говорить о магистральных линиях, то прокладка 1 км оптоволокна обойдется примерно в 100-150 тыс. рублей. Что касается обеспечения функционирования городского узла связи — затраты на решение данной задачи составят порядка 100 тыс. руб. Выстраивание распределительной инфраструктуры на базе оптоволокна для отдельно взятого района обойдется примерно в 150 тыс. руб. Один узел связи, рассчитанный на подключение абонентов, обойдется примерно в 30 тыс. руб. В свою очередь, монтаж оборудования и кабелей для 100 абонентских линий обойдется примерно в 30 тыс. руб.

Если провайдер решит бесплатно предоставлять оборудование для своих клиентов — в частности, оптоволоконные модемы, то каждый из соответствующих девайсов обойдется примерно в 1000 руб. Отметим, что, в силу сохраняющейся зависимости коммуникационного рынка РФ от импорта оптоволокна, соответствующие цены могут меняться в корреляции с курсом рубля.

Таким образом, оптическое волокно в ряде случаев, действительно, может потребовать значительных инвестиций. Однако, по мере увеличения количества абонентов — соответствующие вложения будут окупаться. Многие современные российские провайдеры рассчитывают на это, модернизируя традиционные линии связи и внедряя высокотехнологичные оптоволоконные решения.

Существует несколько способов прокладки волоконно-оптического кабеля, все они обладают своими достоинствами и недостатками, отличаются способами и условиями проведения работ. При различных способах прокладки используются специальные типы оптического кабеля. Основными способами являются:

    прокладка кабеля в грунт («ручным» способом в траншею; безтраншейный, с помощью ножевых кабелеукладчиков; в полиэтиленовых трубах проложенных в грунт);

    прокладка в кабельной канализации (в канале кабельной канализации; по защитным трубам, проложенным в канале кабельной канализации);

    подвес кабеля с силовым элементом на опорах (линий электропередач; освещения, городского транспорта, ЖД транспорта и т. д.);

    прокладка внутри зданий и помещений (внутриобъектовая прокладка);

    прокладка через водные преграды.

Строительство ВОЛС считается очень сложным производственным процессом. В частности, каждая прокладка магистральной линии в зависимости от условий использования (в земле или на опорах) требует правильного и качественного выбора определенного типа кабеля. Немаловажное значение имеет опыт обращения с оптоволокном и квалификация специалиста, без которой высококачественный монтаж и соединение системы будут просто невозможны. Даже укладка волоконно-оптического кабеля в помещении потребует усиленного внимания и специфических навыков, не используемых в обычной прокладке электрических проводов.

Прокладка волоконно-оптического кабеля в грунт . Это наиболее распространенный способ прокладки ВОЛС в местах с отсутствием кабельной канализации. К сожалению, такой способ дороже воздушной прокладки кабеля и занимает больше времени. Но основным преимуществом такой линии связи перед другими является превосходство в несколько раз по надежности.

Прокладка волоконно оптического кабеля осуществляется в грунтах всех категорий, за исключением грунтов, подверженных мерзлотным деформациям.

Прокладка оптического кабеля в грунт осуществляться при температуре окружающего воздуха не ниже -10° С. При более низких температурах (но не ниже -30°С) кабель необходимо выдержать в течение двух суток в отапливаемом помещении и обеспечить прогрев его на барабане непосредственно перед прокладкой.

Прокладка ВОЛС в открытый грунт предполагает использование бронированного кабеля. Толщина брони зависит от структуры земли (почвы) и зараженности ее грызунами. Кабельная броня должна соединятся в муфтах и заземляться для защиты волоконно-оптических систем передач от гроз и воздействия линий электропередач (особенно в местах сближения с опасными объектами). В некоторых случаях, например в случае прокладки кабеля ВОЛС в непосредственной близости от силовых линий (вдоль железных дорог), рекомендуется использовать оптический кабель без металлических элементов. При этом, для возможности идентификации и трассировки таких линий в будущем, на этапе строительства необходимо использовать специальные маркеры

Существует два базовых способа прокладки оптоволоконного кабеля в грунт: это либо укладка кабеля в траншею (траншейный способ), либо используется бестраншейный метод с помощью кабелеукладчиков или установок горизонтально направленного бурения.

Траншейный способ прокладки ВОЛС в грунте применяется чаще всего при монтаже группы кабелей, при этом ширина траншеи может быть такой, что транспортное средство (трактор) может поместиться непосредственно внутри траншеи. Прокладываются кабели в землю также и в обычные траншеи, шириной около 50 см, а также в мини-траншеи. Последние имеют ширину около десяти сантиметров. Они используются при прокладке ВОЛС в земле на коттеджных участках и газонах. Глубина прокладки кабеля таким способом не велика, зато при этом не портится внешний вид участков.

Недостатком этого способа является его трудоемкость и малая производительность. Как правило, траншейный способ применяют, когда по условиям местности невозможно использовать кабелеукладчик. Устройство траншеи выполняется механизмами (экскаватором, фрезой) или вручную, если кабельная трасса проходит в местах, где нет возможности или запрещено использовать тяжелую технику. Кабель укладывается на подготовленную подушку на дне траншеи. Когда трассу пересекают различные препятствия, кабель под ними прокладывают в предварительно уложенную полиэтиленовую трубу, что также помогает защитить кабель на сложных участках трассы от воздействия внешней агрессивной среды, от механических повреждений грызунами. Обратная засыпка траншеи производится вынутым грунтом вручную или механизмами послойно (толщина каждого слоя 200 мм) с закладкой в траншею сигнальной ленты.

Самым распространенным и экономичным способом бестраншейной прокладки ВОЛС является прокладка бронированного кабеля в землю с помощью ножевого кабелеукладчика благодаря высокой скорости механизированного процесса и достаточно высокой скорости укладки (рисунок 2.3). Она применима лишь на линиях сравнительно небольшой протяженности (не более 100 км). В основном эта технология используется при наличии плавно изменяющегося рельефа местности и относительно несложных грунтов, к тому же на тех направлениях, где в ближайшее время резкого увеличения трафика, требующего прокладки новых кабелей, не предвидится.

Этим способом обеспечивается оптимальная глубина залегания трассы (около 1.2 метра). Технология выполнения работ предусматривает прорезание кабелеукладчиком в грунте узкой щели и укладка на ее дно кабеля. Прокладка в грунт ведется по специально разработанной схеме для оптоволоконного кабеля, когда кабельный барабан монтируют спереди трактора кабелеукладчика. Чтобы уменьшить высокие механические нагрузки (продольное растяжение, поперечное сжатие, изгиб, вибрация) на кабель, возникающие на пути его движения от барабана к выходу из кабеленаправляющей кассеты, создается принудительное вращение барабана и не допускается засорение кассеты кабелеукладачного ножа при осуществлении укладки кабеля в грунт. За процессом укладки ведется непрерывный контроль, предполагающий соблюдение следующих технологических параметров: неизменная скорость укладки; постоянный наклон кабелеукладчика; исключение резких изгибов кабеля; недопущение превышения допустимого растяжения оптоволоконного кабеля.

Рисунок 2.3 – Прокладка оптического кабеля кабелеукладчиком

На некоторых участках возможно комбинирование технологий. В местах перехода через автодороги, железные дороги, а так же реки, овраги и болота используется горизонтально-направленное бурение. На данных участках кабель прокладывается в заложенные трубы.

При любом способе прокладки кабеля непосредственно в грунт в местах стыковки строительных длин отрываются котлованы для размещения оптических муфт и запаса оптики. Запас должен обеспечивать возможность подачи муфты в зону удобную для организации рабочего места монтажников. Для соединения строительных длин используются оптические муфты. Для обеспечения возможности измерения сопротивления изоляции наружных оболочек на каждой строительной длине или на участках из нескольких строительных длин из муфт в контейнер проводов заземления выводятся провода заземления, соединенные с броней. В контейнер с помощью перемычек можно соединять броню волоконно оптического кабеля, а при необходимости снимать перемычки и проводить измерения сопротивления изоляции.

Прокладка волоконно-оптического кабеля в кабельной канализации . Прокладку оптических кабелей связи в кабельной канализации производят как ручным, так и механизированными способами с использованием типовых механизмов и приспособлений. При этом всегда необходимо строго соблюдать следующее требование: усиление тяжения, радиус изгиба, температура во время прокладки и допустимое сдавливающее усилие должны соответствовать требованиям технических условий на прокладываемый кабель чтобы избежать разрыва и скрытых повреждений волокон.

Кабельная канализация состоит из трубопровода и колодцев (рисунок 2.4). Кабель прокладывается в кабельный трубопровод, а возможные соединения производятся в кабельных колодцах или кабельных шахтах. Смотровые колодцы имеют люки. Всю канализацию располагают под землей, а на поверхность выводят только люки смотровых колодцев, закрытые чугунными крышками, под которыми расположены стальные запирающиеся крышки.

Перед прокладкой кабеля в кабельной канализации производится проверка на проходимость ее каналов и, если требуется, ремонт канализации, а также ремонт и дооснащение кабельных колодцев. Для более эффективного использования каналов кабельной канализации и возможности прокладки оптики в одном канале с медными кабелями в них прокладываются защитные полиэтиленовые трубы.

1 – чугунные крышки; 2 – трубопроводы; 3 – кабель; 4 – смотровые колодцы; 5 – люки

Рисунок 2.4 – Кабельная канализация

Прокладка в кабельной канализации выполняется преимущественно методом затягивания вручную или с помощью лебедок. При прокладке оптоволокна в защитных трубах возможно применение метода проталкивания.

Прокладка ведется с учетом следующих факторов:

    поворот трассы на угол 90° эквивалентен увеличению длины прямолинейного участка на 200 м;

    радиус изгиба ОК при прокладке не должен быть менее 20 наружных диаметров ОК;

    не допускается превышение величины тягового усилия, нормируемого для конкретного ОК;

    во избежание повреждения пластмассовых каналов кабельной канализации применяют синтетический тяговый фал (капроновый, полипропиленовый);

    не используют смазку для уменьшения трения при прокладке ОК, поскольку оболочка ОК может растрескаться или за счет полимеризации смазки может быть затруднено извлечение ОК из канала кабельной канализации;

    не допускается заталкивать ОК в изгиб канала кабельной канализации;

    барабан с ОК при прокладке должен равномерно вращаться приводом или вручную, но не тягой прокладываемого ОК.

На сложных участках трассы и при наличии больших строительных длин кабеля, его прокладку производят в два направления с одного из транзитных колодцев (желательно углового), расположенного примерно на трети длины трассы. Вначале целесообразно проложить большую длину кабеля, затем оставшийся на барабане размотать, уложить «восьмеркой» возле колодца и далее проложить в другую сторону.

Строительные длины оптического кабеля соединяются с помощью проходных или тупиковых оптических муфт различных конструкций. Конкретный тип муфт определяется исходя из условий размещения в колодце и указывается в проектной документации.

В случае затяжки оптического кабеля с помощью тягового или лебёдочного механизма, в месте ввода кабеля в колодец, используется роликовый механизм, для предотвращения повреждения кабеля. Скорость протяжки кабеля не должна превышать 30 м/мин. В проходных колодцах кабель выкладывается по стенкам и подвязывается на консоли кабельными стяжками. Место ввода оптического кабеля в кабельный колодец герметизируется проходным сальником, для предотвращения заиливания, либо затопления каналов в весеннее время. В конечных колодцах оставляется достаточный кабельный запас для монтажа оптических муфт с выносом кабеля в специализированный автомобиль (оптическая лаборатория), в котором про проводится оптическое измерение и сварка волокон.

Подвеска волоконно-оптического кабеля. Варианты подвески ВОК имеют ряд достоинств по сравнению с другими способами строительства: отсутствие необходимости отвода земель и согласований с заинтересованными организациями; уменьшение сроков строительства; уменьшение количества повреждений в районах городской застройки и промышленных зон; снижение капитальных и эксплуатационных затрат в районах с тяжелыми грунтами.

Подвеска волоконно-оптических кабелей производится по уже установленным опорам и не требует тщательной предварительной подготовки трассы прокладки, поэтому более технологична и проще, чем прокладка в грунт.

Для прокладки ВОЛС методом подвески к опорам часто используют подвеску оптоволоконного кабеля к стальному тросу, который натягивается между опорами на консолях. Применяется также подвеска оптоволоконного кабеля со встроенным тросом на консолях специальной конструкции.

При подвеске оптоволоконного кабеля к стальному тросу каждая консоль крепится к опоре с помощью специальных шурупов. С учетом нормальной стрелы провеса высота установки консолей должна быть такова, чтобы расстояние от уровня земли до самой нижней точки кабеля составлял 4,5 м и более. К тросу оптоволоконный кабель крепится с помощью подвесов, выполненных из оцинкованной тонколистовой стали. Такие подвесы должны свободно перемещаться по стальному тросу и плотно охватывать оптоволоконный кабель.

В случае подвески оптоволоконного кабеля, в который встроен несущий трос, применяется стандартная арматура и поддерживающий зажим. Для натяжного крепления самонесущего оптоволоконного кабеля применяют спиральные зажимы (перемонтаж спиральных натяжного и поддерживающего зажимов запрещен).

Наиболее важное отличие прокладки путем подвеса волоконно-оптических кабелей от других способов состоит в том, что места сращивания двух строительных длин должны располагаться на опоре вместе с технологическим запасом кабеля, достаточным для спуска с опоры, а также для восстановительных работ в случае аварийных ситуаций на линии. Сращивание строительных длин волоконно-оптического кабеля всегда выполняется в монтажном автомобиле или палатке. Это обуславливает необходимость резервирования больших длин технологического запаса, чем при прокладке в грунт. Кроме того, необходимо уделить внимание надежному закреплению запаса, поскольку нахождение на опоре сопряжено с постоянным воздействием ветровых нагрузок

Прокладка ВОЛС внутри зданий , по сравнению с другими видами монтажа, дело менее затратное и не представляет особых сложностей. Конструкция используемого для этих целей оптоволоконного кабеля более гибкая и легкая, а длина трасс небольшая, что значительно упрощает монтаж.

Способы прокладки ВОЛС внутри здания, как правило, зависят от назначения помещения. В производственных помещениях, узлах связи прокладка ВОЛС и других коммуникаций осуществляется по кабелеростам, кабельным лестницам, направляющим. Иногда кабели закрепляются к потолку при помощи специальных крюков и подвесов. Прокладка ВОЛС внутри зданий по кабельным лоткам и направляющим производится с помощью кабельных роликов, лебедки, устройств для размотки кабельных барабанов.

При строительстве внутри объектовых участков ВОЛС должен использоваться кабель, имеющий сертификат пожарной безопасности. Такой кабель можно узнать по букве «Н» в его маркировке. Он не горит, не поддерживает горение, не выделяет ядовитых газов, а разлагается на окись алюминия и воду.

Прокладка ВОЛС через водные препятствия (по дну)– наиболее затратный способ прокладки оптоволоконного кабеля. Если речь идет о пересечении реки, то при наличии моста прокладка кабеля выполняется по нему, а при его отсутствии применяется подвеска с использованием воздушных опор либо же по дну водоема. Так, как среда прокладки ВОЛС меняется (была земля, а стала вода, или воздух) то тип кабеля тоже соответственно должен изменится. На берегу устанавливается оптическая муфта, в которой сращивается бронированный оптический кабель для прокладки в открытом грунте с самонесущим оптическим кабелем для подвески на опорах над рекой, или подводным, для прокладки ВОЛС по дну водных препятствий. В местах расположения соединительных муфт организовываются технологические запасы кабеля.

На железнодорожном транспорте при строительстве ВОЛС наибольшее распространение нашли способы подвески волоконно-оптического кабеля на опорах контактной сети электрифицированных железных дорог и высоковольтных линиях автоблокировки, а также прокладка в трубопроводах. За счет воздушной подвески капитальные затраты на строительства снижаются до 30 % относительно его подземной прокладки . Вместе с этим время строительства ВОЛС значительно снижается. Одновременно обеспечиваются благоприятные условия для осмотра линейно-кабельных сооружений при планировании регламентных и профилактических работ в процессе технической эксплуатации линий передач, создаются благоприятные возможности для своевременного подъезда эксплуатационного персонала к месту производства работ, в том числе и аварийно-восстановительных.

Основным преимуществом воздушной подвески волоконно-оптического кабеля является то, что практически не требуется предварительной подготовки трассы, так как она уже задана существующей воздушной линией. Кроме того, к минимуму сводятся строительство линейных устройств, так как они уже построены, а значит, время на строительство значительно снижается.

Однако подвеска кабеля на опорах обладает некоторыми недостатками. Так, при подземной прокладке волоконно-оптический кабель менее подвержен воздействию отрицательных факторов, влияющих на устойчивое функционирование волоконно-оптических линий связи. Поэтому, при планировании и создании цифровых сетей связи железнодорожного транспорта необходимо учитывать последствия влияний внешних и внутренних дестабилизирующих факторов, а также оценивать меры, которые предпринимаются эксплуатационными подразделениями для обеспечения надежной и устойчивой работы сети связи в реальных условиях окружающей среды и принятой системы технической эксплуатации.

Это наиболее распространенный способ прокладки ВОЛС в местах с отсутствием кабельной канализации. К сожалению, такой способ дороже воздушной прокладки кабеля и занимает больше времени. Зато такая линия связи в несколько раз превосходит последнюю по надежности. Существует два базовых способа прокладки оптовлоконного кабеля в грунт: это либо укладка кабеля в траншею (траншейный способ), либо используется бестраншейный метод с помощью кабелеукладчиков или установок горизонтально направленного бурения.

Прокладка ВОЛС в открытый грунт предполагает использование бронированного кабеля. Толщина брони зависит от структуры земли (почвы) и зараженности ее грызунами. Кабельная броня должна соединятся в муфтах и заземляться для защиты волоконно-оптических систем передач от гроз и воздействия линий электропередач (особенно в местах сближения с опасными объектами). В некоторых случаях, например в случае прокладки кабеля ВОЛС в непосредственной близости от силовых линий (вдоль железных дорог), рекомендуется использовать оптический кабель без металлических элементов. При этом, для возможности идентификации и трассировки таких линий в будущем, на этапе строительства необходимо использовать специальные маркеры (см. дополнительно маркеры и маркероискатели ).

Траншейный способ прокладки ВОЛС в грунте применяется чаще всего при монтаже группы кабелей, при этом ширина траншеи может быть такой, что транспортное средство (трактор) может поместиться непосредственно внутри траншеи. Прокладываются кабели в землю также и в обычные траншеи, шириной около 50 см, а также в мини-траншеи. Последние имеют ширину около десяти сантиметров. Они используются при прокладке ВОЛС в земле на коттеджных участках и газонах. Глубина прокладки кабеля таким способом не велика, зато при этом не портится внешний вид участков. В Европе популярна технология монтажа кабеля в асфальтное покрытие. Асфальт прорезается при помощи специального ножа, аналогичного тому, который используется у нас для ремонта дорог. Далее, в полученную траншею шириной от 19 до 32 мм и глубиной до 305 мм укладывается кабель. Кабель может защищаться либо специальным коробом, либо несколькими слоями защитных материалов, которые укладываются над ним. Узкая и мелкая траншея обеспечивает прохождение оптоволокна в грунте над имеющимися коммуникациями, нанося минимальный ущерб инфраструктуре дорог. После прокладки кабеля, такие траншеи заливаются битумом. Наибольшее распространение этот метод получил в Скандинавии. В нашей же стране он не нашел широкого применения в основном из-за низкого качества дорожного покрытия.

Возможно применение траншейного способа прокладки ВОЛС в грунт в случае наличия множества препятствий (рядом лежащих коммуникаций, дренажных систем), но в этом случае «проблемный участок» приходится, как правило, проходить вручную.

Самым распространенным способом бестраншейной прокладки ВОЛС является прокладка бронированного кабеля в землю с помощью ножевого кабелеукладчика. Она применима лишь на линиях сравнительно небольшой протяженности (не более 100 км). В основном эта технология используется при наличии плавно изменяющегося рельефа местности и относительно несложных грунтов, к тому же на тех направлениях, где в ближайшее время резкого увеличения трафика, требующего прокладки новых кабелей, не предвидится. Трасса для прокладки бронированного кабеля в землю выбирается, как правило, вдоль дорог различного назначения и категории, за границей полосы отвода.

Что касается прокладки ВОЛС в грунте в ЗПТ (защитные пластмассовые трубы), то этот основной способ прокладки кабеля в Европе. Сегодня он широко используется и в России. ЗПТ, выполненные из полиэтилена высокой прочности, выпускаются длиной от 600 до 4000 метров и поставляются на специальных бухтах или барабанах. Срок их службы в земле достигает 50 лет, они надежно защищают оптоволоконный кабель от механического повреждения (в частности, от грызунов), позволяя использовать в ВОЛС недорогие оптоволоконные кабели без брони. К тому же повреждение оптоволоконного кабеля при проведении земляных работ исключено (он помещается в ЗПТ после завершения укладки трубы).

ЗПТ обычно прокладываются в земле в открытых траншеях либо бестраншейным способом при температуре от -10°C до +50°C (эксплуатация ЗПТ допускается при температуре от -50°C до 65°C). При прокладке в грунте резкие перегибы ЗПТ недопустимы: минимальный радиус должен составлять 1,5 м и более.

В свою очередь, прокладка ВОЛС в землю в защитные трубы обычно осуществляется методами ручного затягивания при помощи УЗК ; механизированного затягивания при помощи кабельных лебедок ; пневматического поршневого/беспоршневого метода.

В целом прокладка ВОЛС в грунт при помощи специальных кабелеукладчиков - самый быстрый способ прокладки ВОЛС. Он обеспечивает значительную степень механизации процесса наряду с оптимальной глубиной трассы (приблизительно 1,2 м). Перед прокладкой грунт прорезывается кабельным ножом, и в полученную прорезь укладывается кабель. Некоторые кабелеукладчики позволяют укладывать одновременно несколько кабелей на разной глубине. Над кабелями требуется укладка сигнальной ленты или установка специальных информационных столбиков. Практики рекомендуют использовать сигнальную ленту, так как столбики в нашей стране порой служат плохую службу, привлекая внимание искателей металла. Сигнальная лента изготовлена из не гниющего материала чаще всего желтого цвета. Технология прокладки ВОЛС требует обеспечения постоянной скорости, а также не допущения резких изгибов и превышения допустимого растяжения кабеля (даже наклон кабелеукладчика должен быть постоянным).

Прокладка ВОЛС в грунте (в земле) может также вестись и методом горизонтального направленного бурения (ГНБ) при строительстве ВОЛС. Этот метод, называемый также «наклонно-направленным бурением» - один из самых распространенных при прокладке стальных футляров для кабелей. При этом длина прокола может превышать 1000 м без выхода на поверхность. Данная технология применяется для пересечения таких препятствий, как сельскохозяйственные угодья, железные и автомобильные дороги, трамвайные пути, водные преграды, на территории аэропортов, под взлетно-посадочными полосами, а также на природоохранных территориях.

Оговариваются многими моментами. Первое, c чем необходимо определиться, это тип кабеля. Он зависит от условий и способа прокладки, а также от объекта монтажа. Например, при воздушной прокладке кабеля используется подвесной или самонесущий оптоволоконный кабель. Универсальный, который является более мягким и легким, применяется внутри помещения. В кабельной канализации укладывают более надежный тяжелый кабель с элементами, защищающими от вредного воздействия окружающей среды. Если кабель укладывают в грунт, то применяют специальные полимерные трубы, защищающие от грызунов и подвижек грунта, снабжают центральным силовым стальным элементом. Сам же кабель оснащен броней – металлической сеткой.

Способы прокладки

Наиболее часто кабель прокладывают в кабельную канализацию или укладывают в грунт. Но существуют и другие способы, более современные, среди них: монтаж, используя бурение в горизонтальном направлении, наматывание на грозотрос или укладка в асфальт, когда возводится дорожное покрытие.

В зданиях правила прокладки кабеля позволяют использовать слаботочные каналы или пустоты за подвесным потолком. Помимо этого возможна укладка в специальные лотки. При установке кабеля в здании следует строго следить за радиусами изгиба (они не должны быть менее допустимых для каждого кабеля индивидуально). Все кабеля, применяемые в зданиях, должны пройти проверку в соответствии с условиями пожарной безопасности.

При прокладке под землей (в грунт) необходимо выкапывать траншеи не менее 1м глубиной, учитывая запас по длине в тех местах, где кабель соединяется, а также на концах трасс. Герметичность кабеля является основным требованием при его прокладке по кабельному колодцу.

При воздушной прокладке учитываются все нагрузки, действующие на воздушно-кабельный переход. Например, необходимо учитывать его провисание, меняющееся в зависимости от скачков температуры и силы натяжения кабеля, для расчета его длины. Если знать предельную прочность кабеля на разрыв, можно рассчитать его натяжение, которое составляет не более 60% от прочности, тогда можно гарантировать надежность прокладки .

Этапность

Процесс прокладки кабеля состоит из двух этапов – подготовительного и основного. Для подготовительного этапа необходимо провести внешний осмотр и рассчитать оптические характеристики. При внешнем осмотре основной упор делается на проверке целостности и отсутствии повреждений, например, в изоляции и в кабельном барабане. Также проверяется соответствие данных, указанных в паспорте (прилагается к каждой катушке) и указанных на барабане. В первую очередь при проверке оптических характеристик определяют погонное затухание оптоволоконного кабеля и сравнивают с паспортными. Заодно проверяют целостность оптических волокон. После этого переходят к основному этапу.