Цикл работы по сетевому планированию. Сетевое планирование и управление
Читайте также
7.1.СЕТЕВОЕ ПЛАНИРОВАНИЕ
Сетевое планирование - это одна из форм графического отражения содержания работ и продолжительности выполнения планов. Как правило, сетевое планирование используется при составлении стратегических планов и долгосрочных комплексов различных видов деятельности предприятия (проектной, плановой,
организационной и др.).
Наряду с линейными графиками и табличными расчетами сетевые методы планирования широко применяются при разработке перспективных планов и моделей сложных производственных систем и других объектов долгосрочного использования.
Сетевые планы работ предприятия по созданию новой конкурентоспособной продукции содержат не только общую длительность всего комплекса проектно-производственной и финансово-экономической деятельности, но и продолжительность и последовательность отдельных процессов или этапов, а также потребность необходимых экономических ресурсов.
Впервые планы-графики выполнения производственных процессов были применены на американских фирмах Г. Гантом. На линейных (ленточных) графиках по горизонтальной оси в выбранном масштабе откладывается продолжительность работ по всем" стадиям, этапам производства. Содержание циклов работ (с необходимой степенью их расчленения на отдельные части или элементы) изображается по вертикальной оси. Линейные графики обычно применяются на отечественных предприятиях в процессе краткосрочного или оперативного планирования производственной деятельности. Основной недостаток таких планов-графиков - невозможность тесной взаимоувязки отдельных работ в единую производственную систему или общий процесс достижения запланированных конечных целей предприятия.
В отличие от линейных графиков сетевое планирование служит основой для экономических и математических расчетов, графических и аналитических вычислений, организационных и управленческих решений, оперативных и стратегических планов. Сетевое планирование обеспечивает не только изображение, но и моделирование, анализ и оптимизацию проектов выполнения сложных технических заданий, конструкторских разработок и т.д.
Под сетевым планированием принято понимать графическое изображение определенного комплекса выполняемых работ, которое не только отражает их логическую последовательность, существующую взаимосвязь и планируемую продолжительность, но обеспечивает также последующую оптимизацию разработанного графика с тем, чтобы использовать его для текущего управления ходом работ.
Сетевое планирование основывается на теории графов. Под графом понимается совокупность точек (узлов), соединенных между собой линиями. Направление линий показывается стрелками. Отрезки, соединяющие вершины, называются ребрами (дугами) графов. Ориентированным называется такой граф, на котором стрелками указаны направления всех его ребер, или дуг. Графы носят названия карт, лабиринтов, сетей и диаграмм.
Теория графов оперирует такими понятиями, как пути, контуры и др. Путь - это последовательное соединение дуг, т.е. конец каждого предыдущего отрезка совпадает с началом последующего. Контур - это путь, начальная вершина которого совпадает с конечной. Другими словами, сетевой график - это ориентированный граф без контуров, дуги (ребра) которого имеют одну или несколько числовых характеристик. На графике ребрами считаются работы, а вершинами - события.
Работой называется любой производственный процесс или иные действия, приводящие к достижению определенных результатов. Работой считается и возможное ожидание начала последующих процессов, связанное с перерывами или дополнительными затратами времени. Работа-ожидание требует обычно затрат рабочего времени без использования ресурсов, например остывание нагретых заготовок, затвердевание бетона и т.д. Кроме действительных работ и работ-ожиданий, существуют фиктивные работы, или зависимости. Фиктивной работой считается логическая связь или зависимость между какими-то конечными процессами или событиями, не требующая затрат времени. На графике фиктивная работа изображается штриховой линией.
Событиями считаются конечные результаты предшествующих работ. Событие фиксирует факт выполнения работы, конкретизирует процесс планирования, исключает возможность различного толкования различных процессов и работ. В отличие от работы, как правило, имеющей свою продолжительность во времени,
Событие представляет только момент свершения планируемого действия, например: цель выбрана, план составлен, товар произведен, продукция оплачена, деньги поступили и т.д. События бывают начальными (исходными) или конечными (завершающими), простыми или сложными, а также промежуточными, предшествующими или последующими и т.д.
Существует три основных способа изображения событий и работ на сетевых графиках: вершины-работы, вершины-события и смешанные сети.
В сетях типа «вершины-работы» все процессы или действия представлены в виде следующих один за другим прямоугольников, связанных логическими зависимостями.
Как видно из сетевого графика (рис. 1), на нем изображена простая модель, или сеть, состоящая из пяти взаимосвязанных работ: А, Б, В, Г и Д. Исходной является работа А, за которой следуют промежуточные работы Б, В и Г и далее завершающая работа Д.
В сетях типа «вершины-события» все работы или действия представлены стрелками, а события - кружками (рис. 2). На этом сетевом графике отражен простой производственный процесс, включающий шесть взаимосвязанных событий: 0, 1, 2, 3, 4 и 5. Начальным в данном случае является нулевое событие, конечным - пятое, все остальные - промежуточные.
Сетевые графики служат не только для планирования разнообразных работ, но и для их координации между руководителями и исполнителями проектов, а также для рационального использования производственных ресурсов.
Сетевое планирование успешно применяется в различных сферах предпринимательской и производственной деятельности, таких, как:
Научно-исследовательские работы;
Проектирование опытно-конструкторских разработок;
Осуществление организационно-технологических проектов;
Освоение опытного и серийного производства продукции;
Строительство и монтаж промышленных объектов;
Ремонт и модернизация технологического оборудования;
Разработка бизнес-планов производства новых товаров;
Реструктуризация действующего производства в условиях рынка;
Подготовка и расстановка различных категорий персонала;
Управление инновационной деятельностью и т.п.
Применение сетевого планирования в современном производстве способствует решению стратегических и оперативных задач. Сетевое планирование позволяет:
1) обоснованно выбирать цели развития каждого подразделения предприятия с учетом существующих рыночных требований и планируемых конечных результатов;
2) четко устанавливать детальные задания всем подразделениям и службам предприятия на основе их взаимоувязки с единой стратегической целью в планируемом периоде;
3) привлекать к составлению планов-проектов опытных и высококвалифицированных исполнителей предстоящих работ;
4) более эффективно распределять и рационально использовать ресурсы предприятия;
5) прогнозировать ход выполнения основных этапов работ, и своевременно корректировать сроки;
6) проводить многовариантный экономический анализ различных технологических методов и последовательности путей выполнения работ, а также распределения ресурсов.
7) оперативно получать необходимые плановые данные о фактическом состоянии ходе работ, издержках и результатах производства.
8) увязывать в процессе планирования и управления работами долгосрочную общую стратегию и краткосрочные конкретные цепи предприятия.
Важнейшие этапы сетевого планирования производственных
Разбивка комплекса работ на отдельные составляющие и их
закрепление за ответственными исполнителями;
Выявление и описание каждым исполнителем событий и работ, необходимых для достижения поставленной цели;
Построение первичных сетевых графиков и уточнение содержания планируемых работ;
Сшивание частных сетей и построение сводного сетевого графика выполнения комплекса работ;
Обоснование или уточнение времени выполнения каждой работы в сетевом графике.
Разбивку (расчленение) комплекса планируемых работ осуществляет руководитель проекта. В ходе сетевого планирования применяются два способа распределения выполняемых работ: разделение функций между исполнителями (горизонтальное распределение); построение схемы уровней руководства проектом (вертикальное распределение). В первом случае простая система или объект подразделяются на отдельные процессы, части или элементы, для чего может быть построен укрупненный сетевой график. Затем каждый процесс делится на операции, приемы и другие расчетные действия. На каждую составляющую комплекса работ создается свой сетевой график. Во втором случае сложный проектируемый объект делится на отдельные части путем построения известной иерархической структуры соответствующих уровней управления проектом.
Составление сетевых графиков на каждом уровне проводится их руководителями или ответственными исполнителями. Каждый из ни в процессе сетевого планирования:
o составляет первичный сетевой график на заданный объем работ;
o оценивает ход выполнения закрепленных за ним работ и представляет необходимую информацию своему руководству;
o участвует совместно с работниками производственных подразделений или функциональных органов в подготовке плановых и управленческих решений;
o обеспечивает выполнение принимаемых решений.
Первичные сетевые графики, построенные на уровне ответственных исполнителей, должны быть детализированы таким образом, чтобы в них можно было отразить как всю совокупность выполняемых работ, так и все существующие взаимосвязи между отдельными работами и событиями. Вначале необходимо выявить, какими событиями будет характеризоваться комплекс работ, порученный ответственному исполнителю. Каждое событие должно устанавливать завершенность предшествующих действий, например: выбрана цель проекта, обоснованы способы проектирования, рассчитаны показатели конкурентоспособности и т.п. Все события и работы, входящие в заданный комплекс, рекомендуется перечислять в порядке их выполнения.
Сшивание сетевого графика осуществляет ответственный исполнитель на основе установленного перечня работ.
Завершающий этап сетевого планирования - определение продолжительности выполнения отдельных работ или совокупных процессов. В детерминированных моделях длительность работ считается неизменной. В реальных условиях время выполнения разнообразных работ зависит от большого числа факторов (как внутренних, так и внешних) и поэтому считается случайной величиной. Для установления длительности любых работ необходимо в первую очередь пользоваться соответствующими нормативами или нормами трудовых затрат. При отсутствии исходных нормативных данных продолжительность всех процессов и работ может быть установлена различными методами, в том числе и с применением экспертных оценок.
Длительность планируемого процесса должны оценивать наиболее опытные специалисты-эксперты, руководители или ответственные исполнители работ. При выборе оценки необходимо максимально использовать имеющиеся на производстве справочно-нормативные материалы.
Полученную оценку следует рассматривать как временной ориентир или возможный вариант продолжительности работ. При изменении проектных условий установленные оценки необходимо корректировать в ходе выполнения сетевых графиков.
В процессе сетевого планирования экспертные оценки длительности предстоящих работ обычно устанавливаются ответственными исполнителями. По каждой работе, как правило, дается несколько оценок времени: минимальная T min , максимальная Т тях и наиболее вероятная Т ив. Если определять продолжительность работ только по одной оценке времени, то она может оказаться далекой от реальности, что приведет к нарушению всего хода работ по сетевому графику. Оценка продолжительности работ выражается Ц человеко-часах, человеко-днях или других единицах времени.
Минимальное время - это наименьшее из возможных рабочее время выполнения проектируемых процессов. Вероятность осуществления работы за такое время невелика. Максимальное время - это наибольшее время выполнения работы с учетом риска и крайне неудачного стечения обстоятельств. Наиболее вероятное время - это возможное или близкое к реальным условиям время выполнения работы.
Полученная наиболее вероятная оценка времени не может быть принята в качестве нормативного показателя ожидаемого времени выполнения работ, так как в большинстве случаев эта оценка субъективна и во многом зависит от опыта ответственного исполнителя работ. Поэтому, для того чтобы определить ожидаемое время выполнения каждой работы, экспертные оценки подвергают статистической обработке
В практике сетевого планирования наиболее распространен метод критического пути (сеть типа «вершина-событие»), в котором узлы представляют собой начало или окончание завершающего события процесса работы и изображаются кружками, а сами работы - стрелками.
Практическое структурирование проекта начинается с составления перечня работ, в котором все виды работ приводятся с соответствующими условными обозначениями. Определить и тем самым разграничить работы по видам достаточно сложно. Важно соблюдать соответствующую проблеме степень детализации. Перечень работ содержит характеристики необходимых для их выполнения материалов и мощностей по видам (персонала, машин, инструмента), срокам и объемам.
В заключение последовательно устанавливают причинно-следственные связи между работами. Это делают, либо задавая параметры одних работ, непосредственно предшествующих другим работам, либо указывая непосредственно следующие работы. После этого составляют соответствующий сетевой план.
Что представляет собой и как функционирует сетевое планирование и управление? Это система, которая решает вопросы по планированию, управлению и разработке больших комплексов в народном хозяйстве, научным исследованиям, технологической и конструкторской подготовке к производству новых разновидностей изделий, реконструкции старых и строительству новых объектов, капитальному ремонту основных фондов при помощи сетевых графиков.
Сетевое планирование позволяет установить точную взаимосвязь между работами, которые планируются и результатами, которые можно благодаря выполнению этих работ получить. Также дает возможность оперативно рассчитать и скорректировать план любых работ. Сетевое планирование - основа для использования электронно-вычислительной техники в управлении производством и создании автоматических систем управления. Данная технология позволяет высвободить большой человеческий ресурс, занятый составлением стандартных планов для более
Сетевые заключаются в создании логической объекта, которым управляют в виде сетевой модели или графика, находящихся в памяти электронно-вычислительной машины и отражающих длительность и взаимосвязи всех процессов, происходящих при выполнении данного комплекса работ.
Вначале оптимизируется посредством средств вычислительной техники и прикладной математики, а после используется с целью и организации работ. На графике отражены события и работы. Событие характеризует либо начало, либо завершение определенной работы, а сама работа выражает действие, совершение которого необходимо для перехода от события, которое ей предшествует к последующему. На графике события изображаются в виде кружков, а работы, в виде стрелок, которые демонстрируют связь между событиями (также возможен обратный вариант изображения: работы - кружками, а связывающие их события - стрелками).
Сетевое планирование требует конкретного, четкого описания работ с указанием исполнителя каждой из них, указания времени, которое измеряется днями, неделями, декадами, месяцами и наносится над стрелкой. Временные оценки туда вносят ответственные исполнители соответствующих работ. Все работы, которые совершаются над графиком, в конечном итоге ведут к целепланированию. Сетевое планирование длительности работ требует использования не только нормативной документации, но и подтверждающих её опытных данных.
Но часто бывает так, особенно в случаях, когда ведется освоение новых видов продукции, что время исполнения невозможно выразить при помощи одной-единственной достоверной цифры. В таких случаях исполнитель должен дать три оценки:
1) Оптимистическая оценка. Минимальная продолжительность выполнения работ, возможная в наиболее благоприятствующих условиях, в случае, если никто и ничто не помешает её выполнению.
2) Пессимистическая оценка. Максимальное время, которое может потребоваться на выполнение работы, в случае возникновения трудностей.
3) Наиболее вероятная оценка. Показывает время, которое будет затрачено при нормальных условиях работы.
Одним из важнейших элементов в построении графика - продолжительность путей. Пути делятся на полные и критические. Полный путь - это линия, начало которой - исходное событие сети, а конец - её завершающее событие. Критический путь - наиболее длинный, характеризует собой длительность выполнения всех то есть то время, которое будет затрачено на достижение конечной цели.
Критический путь - самый важный показатель во всей системе сетевого программного управления и представляет собой основание для выбора наиболее подходящего плана и для организации контроля за ходом выполнения работ.
Сетевое планиров ание — это метод планирования работ, операции в которых, как правило, не повторяются (например, разработка но-вых продуктов, строительство зданий, ремонт оборудования, проек-тирование новых работ).
Для проведения сетевого планирования вначале необходимо рас-членить проект на ряд отдельных работ и составить логическую схе-му (сетевой граф).
Работа — это любые действия, трудовые процессы, сопровожда-ющиеся затратами ресурсов или времени и приводящие к определен-ным результатам. На сетевых графах работы обозначаются стрелка-ми. Для указания того, что одна работа не может выполняться раньше другой, вводят фиктивные работы, которые изображаются пунктирными стрелками. Продолжительность фиктивной работы принимается равной нулю.
Событие — это факт окончания всех входящих в него работ. Счи-тается, что оно происходит мгновенно. На сетевом графе события изображаются в виде вершин графа. Ни одна выходящая из данного события работа не может начаться до окончания всех работ, входя-щих в это событие.
С исходного события (которое не имеет предшествующих работ) начинается выполнение проекта. Завершающим событием (которое не имеет последующих работ) заканчивается выполнение проекта.
После построения сетевого графа необходимо оценить продолжи-тельность выполнения каждой работы и выделить работы, которые определяют завершение проекта в целом. Нужно оценить потреб-ность каждой работы в ресурсах и пересмотреть план с учетом обес-печения ресурсами.
Часто сетевой граф называют сетевым графиком .
Правила построения сетевых графиков.
1. Завершающее событие лишь одно.
2. Исходное событие лишь одно.
3. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой. Если два события связаны более чем одной работой, рекомендуется ввести дополнительное событие и фиктивную работу:
4. В сети не должно быть замкнутых циклов.
5. Если для выполнения одной из работ необходимо получить ре-зультаты всех работ, входящих в предшествующее для нее событие, а для другой работы достаточно получить результат нескольких из этих работ, то нужно ввести дополнительное событие, отражающее результаты только этих последних работ, и фиктивную работу, свя-зывающую новое событие с прежним.
Например, для начала работы D достаточно окончания рабо-ты А. Для начала же работы С нужно окончание работ А и В.
Метод критического пути
Метод критического пути исполь-зуется для управления проектами с фиксированным временем вы-полнения работ.
Он позволяет ответить на следующие вопросы:
1. Сколько времени потребуется на выполнение всего проекта?
2. В какое время должны начинаться и заканчиваться отдельные
работы?
3. Какие работы являются критическими и должны быть выпол-нены в точно определенное графиком время, чтобы не сорвать уста-новленные сроки выполнения проекта в целом?
4. На какое время можно отложить выполнение некритических работ, чтобы они не повлияли на сроки выполнения проекта?
Самый продолжительный путь сетевого графика от исходного со-бытия к завершающему называется критическим. Все события и рабо-ты критического пути также называются критическими. Продолжи-тельность критического пути и определяет срок выполнения проекта. Критических путей на сетевом графике может быть несколько.
Рассмотрим основные временные параметры сетевых графиков.
Обозначим t (i, j) - продолжительность работы с начальным со-бытием i и конечным событием j .
Ранний срок t р (j) свершения события j - это самый ранний момент, к которому завершаются все работы, предшествующие этому собы-тию. Правило вычисления:
t р (j) = max { t р (i)+ t (j)}
где максимум берется по всем событиям i , непосредственно предше-ствующим событию j (соединены стрелками).
Поздний срок t n (i) свершения события i - это такой предельный мо-мент, после которого остается ровно столько времени, сколько необ-ходимо для выполнения всех работ, следующих за этим событием.
Правило вычисления:
t n (i) = min { t n (j)- t (i, j)}
где минимум берется по всем событиям j , непосредственно следую-щим за событием i .
Резерв R(i) события i показывает, на какой предельно допустимый срок может задержаться свершение события i без нарушения срока наступления завершающего события:
R(i)= t n (i) - t р (i)
Критические события резервов не имеют.
При расчетах сетевого графика каждый круг, изображающий событие, делим диаметрами на 4 сектора:
Управление проектами с неопределенным временем выполнения работ
В методе критического пути предполагалось, что время выполне-ния работ нам известно. На практике же эти сроки обычно не опре-делены. Можно строить некоторые предположения о времени вы-полнения каждой работы, но нельзя предусмотреть все возможные трудности или задержки выполнения. Для управления проектами с неопределенным временем выполнения работ наиболее широкое применение получил метод оценки и пересмотра проектов , рассчитанный на исполь-зование вероятностных оценок времени выполнения работ, предус-матриваемых проектом.
Для каждой работы вводят три оценки:
- оптимистическое время а - наименьшее возможное время вы-полнения работы;
- пессимистическое время b - наибольшее возможное время вы-полнения работы;
- наиболее вероятное время т - ожидаемое время выполнения работы в нормальных условиях.
По а, b и т находят ожидаемое время выполнения работы :
и дисперсию ожидаемой продолжительности t :
Используя значения t , находят критический путь сетевого графика.
Оптимизация сетевого графика
Стоимость выполнения каждой работы плюс дополнительные расходы определяют стоимость проекта. С помощью дополнитель-ных ресурсов можно добиться сокращения времени выполнения критических работ. Тогда стоимость этих работ возрастет, но общее время выполнения проекта уменьшится, что может привести к сни-жению общей стоимости проекта. Предполагается, что работы можно выполнить либо в стандартные, либо в минимальные сроки, но не в промежутке между ними.
График Ганта
Иногда бывает полезным изобразить наглядно имеющийся в на-личии резерв времени. Для этого используется график Ганта . На нем каждая работа (i, j ) изображается горизонтальным отрезком, длина которого в соответствующем масштабе равна времени ее выполне-ния. Начало каждой работы совпадает с ранним сроком свершения ее начального события. График Ганта очень полезен при составлении расписания работ. Он показывает рабочее время, время простоев и относительную загрузку системы. Ожидающие выполнения работы могут быть распределены по другим рабочим центрам.
График Ганта используется для управления работами в процессе. Он указывает, какая работа выполняется по расписанию, а какая опережает его или отстает. Существует много возможностей исполь-зования графика Ганта на практике.
Стоит заметить, что график Ганта не учитывает разнообразия производственных ситуаций (например, поломки или человеческие ошибки, которые требуют повторения работы). График Ганта должен регулярно пересчитываться при появлении новых работ и при пере-смотре продолжительности работ.
График Ганта особенно полезен при работе над проектом с не свя-занными между собой работами. А вот при анализе проекта с тесно взаимосвязанными работами лучше воспользоваться методом кри-тического пути.
Распределение ресурсов, графики ресурсов
До сих пор мы не обращали внимания на ограничения в ресурсах и считали, что все необходимые ресурсы (сырье, оборудование, рабочая сила, денежные средства, производственные площади и т. д.) имеются в достаточном количестве. Рассмотрим один из простейших методов решения проблемы распределения ресурсов - «метод проб и ошибок».
Пример . Произведем оптимизацию сетевого графика по ре-сурсам. Наличный ресурс равен 10 единицам.
Первое число, приписанное дуге графика, означает время выпол-нения работы, а второе - требуемое количество ресурса для выпол-нения работы. Работы не допускают перерыва в их выполнении.
Находим критический путь. Строим график Ганта. В скобках для каждой работы укажем требуемое количество ресурса. По графику Ганта строим график ресурса. На оси абсцисс мы откладываем время, а на оси ординат - потребности в ресурсах.
Считаем, что все работы начинаются в наиболее ранний срок их выполнения. Ресурсы складываются по всем работам, выполняемым одновременно. Также проведем ограничительную линию по ресурсу (в нашем примере это у = 10).
Из графика мы видим, что на отрезке от 0 до 4, когда одновремен-но выполняются работы В, А, С, суммарная потребность в ресурсах составляет 3 + 4 + 5 = 12, что превышает ограничение 10. Так как ра-бота С критическая, то мы должны сдвинуть сроки выполнения или А, или В.
Запланируем выполнение работы В с 6-го по 10-й день. На сроках выполнения всего проекта это не скажется и даст возможность ос-таться в рамках ресурсных ограничений.
Параметры работ
Напомним обозначения: t (i, j) - продолжительность работы (i, j ); t р (i) - ранний срок свершения события i ; t n (i) - поздний срок свер-шения события /.
Если в сетевом графике лишь один критический путь, то его лег-ко отыскать по критическим событиям (событиям с нулевыми резер-вами времени). Ситуация усложняется, если критических путей не-сколько. Ведь через критические события могут проходить как критические, так и некритические пути. В этом случае нужно ис-пользовать критические работы.
Ранний срок начала работы (i, j) совпадает с ранним сроком свер-шения события i: t p н (i, j) = t р (i).
Ранний срок окончания работы (i, j ) равен сумме t р (i) и t(i, j) : t p о (i, j) = t р (i)+ t (i, j).
Поздний срок начала работы (i, j) равен разности t n (j) (позднего срока свершения события j ) и t (i, j) : t пн (i, j) = t п (j) - t (i, j).
Поздний срок окончания работы (i, j ) совпадает с t n (j): t по (i, j) = t п (j).
Полный резерв времени R n (i, j) работы (i, j ) - это максимальный за-пас времени, на которое можно задержать начало работы или увели-чить ее продолжительность, при условии, что весь комплекс работ будет завершен в критический срок:
R n (i, j)= t n (j) - t р (i) - t (i, j)= t по (i, j) - t p о (i, j).
Свободный резерв времени R с (i, j) работы (i, j) - это максимальный запас времени, на которое можно отсрочить или (если она началась в свой ранний срок) увеличить ее продолжительность при условии, что не нарушатся ранние сроки всех последующих работ: R с (i, j)= t р (j) - t р (i) - t (i, j)= t р (j) - t p о (i, j).
Критические работы, как и критические события, резервов не имеют.
Пример. Посмотрим, каковы резервы работ для сетевого гра-фика.
Находим t р (i), t n (i) и составляем таблицу. Значения первых пяти колонок берем из сетевого графика, а остальные колонки просчитаем по этим данным.
Работа (i, j) | Продолжительность t (i, j) | t р (i) | t р (j) | t n (j) | Срок начала работы | |
t p н (i, j) = t р (i) | t пн (i, j) = t п (j) - t (i, j) | |||||
(1,2) | 6-6 = 0 | |||||
(1,3) | 7-4 = 3 | |||||
(1,4) | 8-2 = 6 | |||||
(2,4) | 8-2 = 6 | |||||
(2,5) | 12-6 = 6 | |||||
(3,5) | 12-5 = 7 | |||||
(4,5) | 12-4 = 8 |
Работа (i, j) | Срок окончания работы | Резервы времени работы | ||
t p о (i, j) = t р (i)+ t (i, j) | t по (i, j) = t п (j) | Полный R n (i, j)= = t по (i, j) - t p о (i, j) | Свободный R с (i, j)= = t р (j) - t p о (i, j) | |
(1,2) | 0 + 6 = 6 | 6-6 = 0 | 6-6 = 0 | |
(1,3) | 0 + 4 = 4 | 7-4 = 3 | 4-4 = 0 | |
(1,4) | 0 + 2 = 2 | 8-2 = 6 | 8-2 = 6 | |
(2,4) | 6 + 2 = 8 | 8-8 = 0 | 8-8 = 0 | |
(2,5) | 6 + 6= 12 | 12-12 = 0 | 12-12 = 0 | |
(3,5) | 4 + 5 = 9 | 12-9 = 3 | 12-9 = 3 | |
(4,5) | 8 + 4=12 | 12-12 = 0 | 12-12 = 0 |
Критические работы (работы с нулевыми резервами): (1, 2), (2,4), (2, 5), (4, 5). У нас два критических пути: 1 - 2 - 5 и 1 - 2 - 4 - 5.
Методы сетевого планирования и управления позволяют сосре-доточиться на важнейших для выполнения проекта моментах. При этом требуется, чтобы работы были взаимно независимы, то есть в пределах определенной последовательности работ можно начи-нать, приостанавливать, исключать работы, а также выполнять одну работу независимо от другой работы. Все работы должны выполнять-ся в определенной последовательности. Поэтому методы сетевого планирования и управления широко применяются в строительстве, самолетостроении и судостроении, а также в промышленных отрас-лях с быстро меняющимися тенденциями.
Скептическое отношение к методам сетевого планирования и уп-равления часто основывается на их стоимости, которая может со-ставлять около 5% общей стоимости проекта. Но эти расходы обыч-но полностью компенсируются экономией, достигаемой с помощью более точного и гибкого графика, а также сокращения сроков выпол-нения проекта.
Менеджер проекта на этапе планирования часто сталкивается с ситуацией, когда одних структуры, плана по вехам и матрицы ответственности недостаточно для разработки календарного плана проекта. Такое возникает для весьма крупных проектных задач, где содержательную часть планируемых работ требуется осуществить наиболее рационально, снизив при этом расход временных ресурсов. На помощь проектному менеджеру может прийти сетевое планирование как инструментальное решение, реализуемое по стандартному оптимизационному алгоритму.
Метод сетевого моделирования
Сетевое планирование и управление получило активное развитие с 50-х годов прошлого века сначала в США, затем в других развитых странах и в СССР. Такие методы сетевого планирования, как CPM, PERT позволили существенно поднять «планку» проектного управления в направлении оптимизации временных и содержательных параметров графиков работ. Это дало возможность разрабатывать расписания проектных задач на основе более эффективной методологии сетевого моделирования, вобравшей в себя весь лучший опыт (схема методов календарного планирования приведена ниже). Сетевая диаграмма имеет различные названия, среди них:
- сетевой график;
- сетевая модель;
- сеть;
- граф сети;
- стрелочная диаграмма;
- PERT-диаграмма, и т.д.
Визуально сетевая модель проекта представляет собой графическую схему последовательного комплекса работ и связей между ними. Стоит заметить, что система планирования и управления проектом целостно отображается в графической форме состава операций, их временных протяженностей и взаимосвязанных событий. Основой метода построения модели служит раздел математики, именуемый теорией графов, сформировавшийся в начале 50-х – конце 60-х годов.
Методы календарного планирования и управления проектам
В модели сетевого планирования и управления под графом понимается геометрическая фигура, включающая бесконечное или конечное множество точек и линий, соединяющих между собой эти линии. Граничные точки графа называют его вершинами, а ориентированные в направлениях соединяющие их точки – ребрами или дугами. Сетевая модель в свой состав включает именно ориентированные графы.
Вид ориентированного графа
Разберем другие основные понятия сетевой модели проекта.
- Работа – часть производственного или проектного процесса, имеющая начало и окончание в форме количественно описываемого результата, требующая затрат времени и других ресурсов. Работа отражается на диаграмме в форме однонаправленной стрелочной линии. Формой работ мы можем считать операции, мероприятия и действия.
- Событие – факт завершения работ, результат которых необходим и достаточен для начала реализации следующих операций. Вид события на модели отражается в форме кружков, ромбиков (вехи) или других фигур, внутри которых помещается идентификационный номер события.
- Веха представляет собой работу с нулевой продолжительностью и обозначает важное, значимое событие в проекте (например, утверждение или подписание документа, акт окончания или начала проектного этапа и т.п.).
- Ожидание – это процедура, которая не потребляет никаких ресурсов, кроме затрат времени. Отображается как линия со стрелкой на конце с отметкой длительности и указанием наименования ожидания.
- Фиктивная работа или зависимость – вид технологической и организационной связи работ, не требует никаких усилий и ресурсов, в том числе затрат времени. На сетевой диаграмме показывается как пунктирная стрелка.
Варианты связей и отношение предшествования
Сетевые методы планирования строятся по моделям, в которых проект представляется как целостная совокупность взаимосвязанных работ. Данные модели во многом формируются типом и видом связей между операциями реализации проекта. С позиции типа различаются жесткие, мягкие и ресурсные связи. Видовое различие взаимосвязанности операций основано на отношения предшествования. Рассмотрим основные типы связи.
- Мягкие связи. Им соответствует особая, «дискреционная» логика, дающая «мягкую» основу для выбора операций к размещению на диаграмму, диктуемого технологией. В то время как технология длительный период развивалась на протяжении многих циклов, вырабатываются правила делового оборота, не требующие дополнительной фиксации и планирования. Это экономит время, место модели, стоимость и не требует дополнительного контроля со стороны PM. Поэтому менеджер проекта сам решает, нужна ему такая выделенная операция, или нет.
- Жесткие связи. Данный вид связей основан на технологической логике. Они предписывают выполнение конкретных действий строго после других, что сообразно с процессуальной логикой. Например, наладку оборудования можно осуществлять только после его монтажа. Тестирование недочетов технологии допустимо проводить, если сдача ее в опытную эксплуатацию произошла и т.д. Иными словами, принятая технология (неважно, в какой сфере она реализуется) жестко навязывает последовательность мероприятий и событий проекта, что и обуславливает соответствующий тип связи.
- Ресурсные связи. В условиях назначения на один ответственный ресурс нескольких задач возникает его перегруженность, что может привести к удорожанию проекта. За счет подведения под менее критичную задачу дополнительного ресурса этого можно избежать, и такие связи называются ресурсными.
В момент формирования расписания проекта сначала применяются жесткие, а затем – мягкие связи. Далее, по необходимости, некоторые мягкие связи подлежат сокращению. Благодаря этому может быть достигнуто некоторое сокращение общей длительности проекта. В условиях перегруженности некоторых ответственных ресурсов из-за параллельных работ допустимо разрешение возникших конфликтов введением ресурсных связей. Однако следует контролировать, чтобы новые связи не привели к значительным изменениям общего плана.
Сопряженные работы как некая последовательность проектной задачи связаны друг с другом. Назовем их операциями А и В. Введем понятие отношения предшествования, которое рассматривается как некое ограничение на сроки и общую продолжительность, так как операция В не может начаться до момента окончания операции А. Это означает, что В и А связаны отношением простого предшествования, при этом вовсе не обязательно, чтобы В начиналось одномоментно с окончанием А. Например, отделочные работы начинаются после возведения крыши дома, но это не означает, что выполняться они должны в тот же момент, когда наступит указанное событие.
Метод сетевой модели номер один
Сетевое планирование и управление (СПУ) предполагает два варианта построения сетевой диаграммы проекта: «ребро – работа» и «вершина – работа». При первом варианте отображения диаграммы реализуются метод критического пути и метод PERT. Метод имеет и иное название – «вершина – событие», что, по сути отражает другую сторону единого содержания. В англоязычной интерпретации данный вариант построения сетевой модели по аббревиатуре называют АоА (Activity on Arrow Diagramming). Доминирующее место в методе занимают события проекта. События различают трех видов:
- начальное событие;
- промежуточное событие;
- конечное событие.
Устройство проектной задачи таково, что в процессе ее реализации место есть только одному начальному и одному конечному событию. До начального события и после конечного события работы не выполняются. В момент конечного события проект считается завершенным. До наступления промежуточного события все входящие операции должны быть выполнены. Оно дает старт всем исходящим из него операциям. Фиктивные работы применяются после работ, если неизвестно, какая из них окажется последней.
Пример сетевой диаграммы метода «ребро – работа»
Сетевое планирование при построении сетевой диаграммы АоА руководствуется следующим набором основных правил.
- Проектные события подлежат последовательной нумерации. Номера присваиваются событиям без пропусков.
- Начального и конечного события должно быть только по одному.
- Работа не может планироваться и размещаться в направлении события проекта, имеющего меньший номер, чем у исходного события.
- Недопустима замкнутая последовательность операций, а линии стрелок размещаются в направлении слева-направо.
- Двойные связи между событиями недопустимы.
Алгоритм формирования диаграммы следующий.
- Разместить слева поля начальное событие.
- Найти в списке работы, не имеющие предшественников, и разместить их итоговые события на диаграмме правее начального события без указания номеров.
- Соединить стрелочными линиями работ начальное и только что размещенные события.
- Из состава работ, которых еще нет на диаграмме, выбрать работу, для которой предшественник уже размещен.
- Справа от предшествующего события вставить новое событие без номера и связать их выбранной работой.
- С учетом отношения предшествования соединить фиктивной работой начальное событие размещенной работы и событие, размещенное на сетевом графике.
Международный университет природы, общества и человека
«Дубна»
Кафедра системного анализа и управления
Реферат по дисциплине
«Разработка управленческих решений»
«Сетевое управление
и планирование»
Выполнил: студент
Шадров К.Н., гр. 4111
Проверил:
Бугров А.Н.
Введение
Актуальность данной работы обусловлена необходимостью грамотного управления крупными народнохозяйственными комплексами и проектами, научными исследованиями, конструкторской и технологической подготовкой производства, новых видов изделий, строительством и реконструкцией, капитальным ремонтом основных фондов путём применения сетевых моделей.
Цель работы - описать и усвоить, что, в общем, представляет собой сетевое планирование и управление (СПУ).
Для достижения поставленной цели следует решить следующие задачи :
Ø осветить историю СПУ,
Ø показать, в чём состоит сущность и назначение СПУ,
Ø дать определение основным элементам СПУ,
Ø указать правила построения и упорядочения сетевых графиков,
Ø описать временные показатели СПУ,
Ø дать правила оптимизации сетевого графика,
Ø показать построение сетевого графика в масштабе времени.
История сетевого планирования и управления
Методики сетевого планирования были разработаны в конце 50-х годов в США. В 1956 г. М. Уолкер из фирмы «Дюпон», исследуя возможности более эффективного использования принадлежащей фирме вычислительной машины Univac, объединил свои усилия с Д. Келли из группы планирования капитального строительства фирмы «Ремингтон Рэнд». Они попытались использовать ЭВМ для составления планов-графиков крупных комплексов работ по модернизации заводов фирмы «Дюпон». В результате был создан рациональный и простой метод описания проекта с использованием ЭВМ. Первоначально он был назван методом Уолкера-Келли, а позже получил название метода критического пути - МКП (или CPM - Critical Path Method).
Параллельно и независимо в военно-морских силах США был создан метод анализа и оценки программ PERT (Program Evaluation and Review Technique). Данный метод был разработан корпорацией «Локхид» и консалтинговой фирмой «Буз, Аллен энд Гамильтон» для реализации проекта разработки ракетной системы «Поларис», объединяющего около 3800 основных подрядчиков и состоящего из 60 тыс. операций. Использование метода PERT позволило руководству программы точно знать, что требуется делать в каждый момент времени и кто именно должен это делать, а также вероятность своевременного завершения отдельных операций. Руководство программой оказалось настолько успешным, что проект удалось завершить на два года раньше запланированного срока. Благодаря такому успешному началу данный метод управления вскоре стал использоваться для планирования проектов во всех вооруженных силах США. Методика отлично себя зарекомендовала при координации работ, выполняемых различными подрядчиками в рамках крупных проектов по разработке новых видов вооружения.
Крупные промышленные корпорации начали применение подобной методики управления практически одновременно с военными для разработки новых видов продукции и модернизации производства. Широкое применение методика планирования работ на основе проекта получила в строительстве. Например, для управления проектом сооружения гидроэлектростанции на реке Черчилль в Ньюфаундленде (полуостров Лабрадор). Стоимость проекта составила 950 млн. долларов. Гидроэлектростанция строилась с 1967 по 1976 г. Этот проект включал более 100 строительных контрактов, причем стоимость некоторых из них достигала 76 млн. долларов. В 1974 году ход работ по проекту опережал расписание на 18 месяцев и укладывался в плановую оценку затрат. Заказчиком проекта была корпорация Churchill Falls Labrador Corp., которая для разработки проекта и управления строительством наняла фирму Acress Canadian Betchel.
По существу, значительный выигрыш по времени образовался от применения точных математических методов в управлении сложными комплексами работ, что стало возможным благодаря развитию вычислительной техники. Однако первые ЭВМ были дороги и доступны только крупным организациям. Таким образом, исторически первые проекты представляли из себя грандиозные по масштабам работ, количеству исполнителей и капиталовложениям государственные программы.
Первоначально, крупные компании осуществляли разработку программного обеспечения для поддержки собственных проектов, но вскоре первые системы управления проектами появились и на рынке программного обеспечения. Системы, стоявшие у истоков планирования, разрабатывались для мощных больших компьютеров и сетей мини-ЭВМ.
Основными показателями систем этого класса являлись их высокая мощность и, в то же время, способность достаточно детально описывать проекты, используя сложные методы сетевого планирования. Эти системы были ориентированы на высокопрофессиональных менеджеров, управляющих разработкой крупнейших проектов, хорошо знакомых с алгоритмами сетевого планирования и специфической терминологией. Как правило, разработка проекта и консультации по управлению проектом осуществлялись специальными консалтинговыми фирмами.
Этап наиболее бурного развития систем для управления проектами начался с появлением персональных компьютеров, когда компьютер стал рабочим инструментом для широкого круга руководителей. Значительное расширение круга пользователей управленческих систем породило потребность создания систем для управления проектами нового типа, одним из важнейших показателей таких систем являлась простота использования. Управленческие системы нового поколения разрабатывались как средство управления проектом, понятное любому менеджеру, не требующее специальной подготовки и обеспечивающее лёгкое и быстрое включение в работу. Time Line принадлежит именно к этому классу систем. Разработчики новых версий систем этого класса, стараясь сохранить внешнюю простоту систем, неизменно расширяли их функциональные возможности и мощность, и при этом сохраняли низкие цены, делавшие системы доступными фирмам практически любого уровня.
В настоящее время сложились глубокие традиции использования систем управления проектами во многих областях жизнедеятельности. Причем, основную долю среди планируемых проектов составляют небольшие по размерам проекты. Например, исследования, проведенные еженедельником InfoWorld, показали, что пятидесяти процентам пользователей в США требуются системы, позволяющие поддерживать планы, состоящие из 500-1 000 работ и только 28 процентов пользователей разрабатывают расписания, содержащие более 1 000 работ. Что касается ресурсов, то 38 процентам пользователей приходится управлять 50-100 видами ресурсов в рамках проекта, и только 28 процентам пользователей требуется контролировать более чем 100 видов ресурсов. В результате исследований были определены также средние размеры расписаний проектов: для малых проектов - 81 работа и 14 видов ресурсов, для средних - 417 работ и 47 видов ресурсов, для крупных проектов - 1 198 работ и 165 видов ресурсов. Данные цифры могут служить отправной точкой для менеджера, обдумывающего полезность перехода на проектную форму управления деятельностью собственной организации. Как видим, применение системы управления проектами на практике может быть эффективным и для очень небольших проектов.
Естественно, что с расширением круга пользователей систем проектного менеджмента происходит расширение методов и приемов их использования. Западные отраслевые журналы регулярно публикуют статьи, посвященные системам для управления проектами, включающие советы пользователям таких систем и анализ использования методики сетевого планирования для решения задач в различных сферах управления.
В России работы по сетевому управлению начались в 60-х годах. Тогда методы СПУ нашли применение в строительстве и научных разработках. В дальнейшем сетевые методы стали широко применяться и в других областях народного хозяйства.
Сущность и назначение сетевого планирования и управления
Чем сложнее и больше планируемая работа или проект, тем сложнее задачи оперативного планирования, контроля и управления. В этих условиях применение календарного графика не всегда может быть достаточно удовлетворительным, особенно для крупного и сложного объекта, поскольку не позволяет обоснованно и оперативно планировать, выбирать оптимальный вариант продолжительности выполнения работ, использовать резервы и корректировать график в ходе деятельности.
Перечисленные недостатки линейного календарного графика в значительной мере устраняются при использовании системы сетевых моделей, которые позволяют анализировать график, выявлять резервы и использовать электронно-вычислительную технику. Применение сетевых моделей обеспечивает продуманную детальную организацию работ, создает условия для эффективного руководства.
Весь процесс находит отражение в графической модели, называемой сетевым графиком. В сетевом графике учитываются все работы от проектирования до ввода в действие, определяются наиболее важные, критические работы, от выполнения которых зависит срок окончания проекта. В процессе деятельности появляется возможность корректировать план, вносить изменения, обеспечивать непрерывность в оперативном планировании. Существующие методы анализа сетевого графика позволяют оценить степень влияния вносимых изменений на ход осуществления программы, прогнозировать состояние работ на будущее. Сетевой график точно указывает на работы, от которых зависит срок выполнения программы.
Основные элементы сетевого планирования и управления
Сетевое планирование и управление - это совокупность расчётных методов, организационных и контрольных мероприятий по планированию и управлению комплексом работ с помощью сетевого графика (сетевой модели).
Под комплексом работ мы будем понимать всякую задачу, для выполнения которой необходимо осуществить достаточно большое количество разнообразных работ.
Для того чтобы составить план работ по осуществлению больших и сложных проектов, состоящих из тысяч отдельных исследований и операций, необходимо описать его с помощью некоторой математической модели. Таким средством описания проектов является сетевая модель.
Сетевая модель - это план выполнения некоторого комплекса взаимосвязанных работ, заданного в форме сети, графическое изображение которой называется сетевым графиком .
Главными элементами сетевой модели являются работы и события .
Термин работа в СПУ имеет несколько значений. Во-первых, это действительная работа - протяжённый во времени процесс, требующий затрат ресурсов (например, сборка изделия, испытание прибора и т.п.). Каждая действительная работа должна быть конкретной, чётко описанной и иметь ответственного исполнителя.
Во-вторых, это ожидание - протяжённый во времени процесс, не требующий затрат труда (например, процесс сушки после покраски, старения металла, твердения бетона и т.п.).
В-третьих, это зависимость , или фиктивная работа - логическая связь между двумя или несколькими работами (событиями), не требующими затрат труда, материальных ресурсов или времени. Она указывает, что возможность одной работы непосредственно зависит от результатов другой. Естественно, что продолжительность фиктивной работы принимается равной нулю.
Событие - это момент завершения какого-либо процесса, отражающий отдельный этап выполнения проекта . Событие может являться частным результатом отдельной работы или суммарным результатом нескольких работ. Событие может свершиться только тогда, когда закончатся всё работы, ему предшествующие. Последующие работы могут начаться только тогда, когда событие свершится. Отсюда двойственный характер события : для всех непосредственно предшествующих ему работ оно является конечным, а для всех непосредственно следующих за ним - начальным. При этом предполагается, что событие не имеет продолжительности и свершается как бы мгновенно. Поэтому каждое событие, включаемое в сетевую модель, должно быть полно, точно и всесторонне определено, его формулировка должна включать в себя результат всех непосредственно предшествующих ему работ.
Рисунок 1 . Основные элементы сетевой модели
При составлении сетевых графиков (моделей) используют условные обозначения. События на сетевом графике (или, как ещё говорят, на графе ) изображаются кружками (вершинами графа), а работы - стрелками (ориентированными дугами):
¡ - событие,
Работа (процесс),
Фиктивная работа - применяется для упрощения сетевых графиков (продолжительность всегда равна 0).
Среди событий сетевой модели выделяют исходное и завершающее события. Исходное событие не имеет предшествующих работ и событий, относящихся к представленному в модели комплексу работ. Завершающее событие не имеет последующих работ и событий.
Существует и иной принцип построения сетей - без событий. В такой сети вершины графа означают определённые работы, а стрелки - зависимости между работами, определяющие порядок их выполнения. Сетевой график «работы–связи» в отличие от графика «события–работы» обладает известными преимуществами: не содержит фиктивных работ, имеет более простую технику построения и перестройки, включает только хорошо знакомое исполнителям понятие работы без менее привычного понятия события.
Вместе с тем сети без событий оказываются значительно более громоздкими, так как событий обычно значительно меньше, чем работ (показатель сложности сети , равный отношению числа работ к числу событий, как правило, существенно больше единицы). Поэтому эти сети менее эффективны с точки зрения управления комплексом. Этим и объясняется тот факт, что в настоящее время наибольшее распространения получили сетевые графики «события–работы».
Если в сетевой модели нет числовых оценок, то такая сеть называется структурной . Однако на практике чаще всего используют сети, в которых заданы оценки продолжительности работ, а также оценки других параметров, например трудоёмкости, стоимости и т.п.
Порядок и правила построения сетевых графиков
Сетевые графики составляются на начальном этапе планирования. Вначале планируемый процесс разбивается на отдельные работы, составляется перечень работ и событий, продумываются их логические связи и последовательность выполнения, работы закрепляются за ответственными исполнителями. С их помощью и с помощью нормативов, если таковые существуют, оценивается продолжительность каждой работы. Затем составляется (сшивается ) сетевой график. После упорядочения сетевого графика рассчитываются параметры событий и работ, определяются резервы времени и критический путь . Наконец, проводятся анализ и оптимизация сетевого графика, который при необходимости вычерчивается заново с пересчётом параметров событий и работ.
При построении сетевого графика необходимо соблюдать ряд правил.
1. В сетевой модели не должно быть «тупиковых» событий, то есть событий, из которых не выходит ни одна работа, за исключением завершающего события . Здесь либо работа не нужна и её необходимо аннулировать, либо не замечена необходимость определённой работы, следующей за событием для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения.
2. В сетевом графике не должно быть «хвостовых» событий (кроме исходного), которым не предшествует хотя бы одна работа . Обнаружив в сети такие события, необходимо определить исполнителей предшествующих им работ и включить эти работы в сеть.
3. В сети не должно быть замкнутых контуров и петель, то есть путей, соединяющих некоторые события с ними же самими . При возникновении контура (а в сложных сетях, то есть в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путём пересмотра состава работ добиться его устранения.
4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой . Нарушение этого условия происходит при изображении параллельно выполняемых работ. Если эти работы так и оставить, то произойдёт путаница из-за того, что две различные работы будут иметь одно и то же обозначение. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.
В этом случае рекомендуется ввести фиктивное событие и фиктивную работу , при этом одна из параллельных работ замыкается на это фиктивное событие. Фиктивные работы изображаются на графике пунктирными линиями.
Рисунок 2. Примеры введения фиктивных событий
Фиктивные работы и события необходимо вводить в ряде других случаев. Один из них - отражение зависимости событий, не связанных с реальными работами. Например, работы А и Б (рисунок 2, а) могут выполняться независимо друг от друга, но по условиям производства работа Б не может начаться раньше, чем окончится работа А. Это обстоятельство требует введения фиктивной работы С.
Другой случай - неполная зависимость работ. Например работа С требует для своего начала завершения работ А и Б, на работа Д связана только с работой Б, а от работы А не зависит. Тогда требуется введение фиктивной работы Ф и фиктивного события 3’, как показано на рисунке 2, б.
Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяжённостью во времени.
Если сеть имеет одну конечную цель, то программа называется одноцелевой. Сетевой график, имеющий несколько завершающих событий, называется многоцелевым и расчет ведется относительно каждой конечной цели. Примером может быть строительство жилого микрорайона, где ввод каждого дома является конечным результатом, и в графике по возведению каждого дома определяется свой критический путь.
Упорядочение сетевого графика
Предположим, что при составлении некоторого проекта выделено 12 событий: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 24 связывающие их работы: (0, 1), (0, 2), (0, 3), (1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 7), (3, 6), (3, 7), (3, 10), (4, 8), (5, 8), (5, 7), (6, 10), (7, 6), (7, 8), (7, 9), (7, 10), (8, 9), (9, 11), (10, 9), (10, 11). Составили исходный сетевой график 1.
Упорядочение сетевого графика заключается в таком расположении событий и работ, при котором для любой работы предшествующее ей событие расположено левее и имеет меньший номер по сравнению с завершающим эту работу событием . Другими словами, в упорядоченном сетевом графике все работы-стрелки направлены слева направо: от событий с меньшими номерами к событиям с большими номерами.
Разобьём исходный сетевой график на несколько вертикальных слоёв (обводим их пунктирными линиями и обозначаем римскими цифрами).
Поместив в I слое начальное событие 0, мысленно вычеркнем из графика это событие и все выходящие из него работы-стрелки. Тогда без входящих стрелок останется событие 1, образующее II слой. Вычеркнув мысленно событие 1 и все выходящие из него работы, увидим, что без входящих стрелок остаются события 4 и 2, которые образуют III слой. Продолжая этот процесс, получим сетевой график 2.
Сетевой график 1. Неупорядоченный сетевой график
Сетевой график 2. Упорядочение сетевого графика с помощью слоёв
Теперь видим, что первоначальная нумерация событий не совсем правильная: так, событие 6 лежит в VI слое и имеет номер, меньший, чем событие 7 из предыдущего слоя. То же можно сказать о событиях 9 и 10.
Сетевой график 3. Упорядоченный сетевой график
Изменим нумерацию событий в соответствии с их расположением на графике и получим упорядоченный сетевой график 3. Следует заметить, что нумерация событий, расположенных в одном вертикальном слое, принципиального значения не имеет, так что нумерация одного и того же сетевого графика может быть неоднозначной.
Понятие о пути
Одно из важнейших понятий сетевого графика - понятие пути. Путь - любая последовательность работ, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней работы . Среди различных путей сетевого графика наибольший интерес представляет полный путь - любой путь, начало которого совпадает с исходным событием сети, а конец - с завершающим.
Наиболее продолжительный полный путь в сетевом графике называется критическим . Критическими называются также работы и события, находящиеся на этом пути.
На сетевом графике 4 критический путь проходит через работы (1;2), (2;5), (5;6), (6;8) и равен 16. Это означает, что все работы будут закончены за 16 единиц времени. Критический путь имеет особое значение в системе СПУ, так как работы этого пути определят общий цикл завершения всего комплекса работ, планируемых при помощи сетевого графика. Зная дату начала работ и продолжительность критического пути, можно установить дату окончания всей программы. Любое увеличение продолжительности работ, находящихся на критическом пути, задержит выполнение программы.
Сетевой график 4. Критический путь
На стадии управления и контроля над ходом выполнения программы основное внимание уделяется работам, находящимся на критическом пути или в силу отставания попавшим на критический путь. Для сокращения продолжительности проекта необходимо в первую очередь сокращать продолжительность работ, лежащих на критическом пути.
Временные параметры сетевых графиков
Ранний (или ожидаемый) срок свершения события определяется продолжительностью максимального пути, предшествующего этому событию.
Задержка свершения события по отношению к своему раннему сроку не отразится на сроке свершения завершающего события (а значит, и на сроке выполнения комплекса работ) то тех пор, пока сумма срока свершения этого события и продолжительности (длины) максимального из последующих за ним путей не превысит длины критического пути.
Поэтому поздний (или предельный) срок свершения события равен разности максимального времени наступления последующего за работой события и времени работы до этого (будущего) события.
Резерв времени события определяется как разность между поздним и ранним сроками его свершения.
Резерв времени события показывает, на какой допустимый период времени можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения комплекса работ.
Критические события резервов времени не имею, так как любая задержка в свершении события, лежащего на критическом пути, вызовет такую же задержку в свершении завершающего события.
Из этого следует, что для того, чтобы определить длину и топологию критического пути, вовсе не обязательно перебирать все полные пути сетевого графика и определять их длины. Определив ранний срок наступления завершающего события сети, мы тем самым определяем длину критического пути, а, выявив события с нулевыми резервами времени, определяем его топологию.
Если сетевой график имеет единственный критический путь, то этот путь проходит через все критические события, то есть события с нулевыми резервами времени. Если критических путей несколько, то выявление их с помощью критических событий может быть затруднено, так как через часть критических событий могут проходить как критические, так и некритические пути. В этом случае для определения критических путей рекомендуется использовать критические работы .
Отдельная работа может начаться (и окончиться) в ранние, поздние или другие промежуточные сроки. В дальнейшем при оптимизации графика возможно любое размещение работы в заданном интервале, называемом продолжительностью работы .
Очевидно, что ранний срок начала работы совпадает с ранним сроком наступления предшествующего события.
Ранний срок окончания работы совпадает с ранним сроком свершения последующего события.
Поздний срок начала работы совпадает с поздним сроком наступления предшествующего события.
Поздний срок окончания работы совпадает с поздним сроком наступления последующего события.
Таким образом, в рамках сетевой модели моменты начала и окончания работы тесно связаны с соседними событиями соответствующими ограничениями.
Если путь не критический, то он имеет резерв времени , определяемый как разность между длиной критического пути и рассматриваемого. Он показывает, на сколько в сумме могут быть увеличены продолжительности всех работ, принадлежащих этому пути. Отсюда можно сделать вывод, что любая из работ пути на его участке, не совпадающем с критическим путём (замкнутым между двумя событиями критического пути), обладает резервом времени.
Среди резервов времени работ выделяют четыре разновидности.
Полный резерв времени работы показывает, на сколько можно увеличить время выполнения данной работы при условии, что срок выполнения комплекса работ не изменится.
Полный резерв времени работы равен резерву максимального из путей, проходящего через данную работу. Этим резервом можно располагать при выполнении данной работы, если её начальное событие свершится в самый ранний срок, и можно допустить свершение конечного события в его самый поздний срок.
Важным свойством полного резерва времени работы является то, что он принадлежит не только этой работе, но и всем полным путям, проходящим через неё. При использовании полного резерва времени только для одной работы резервы времени остальных работ, лежащих на максимальном пути, проходящем через неё, будут полностью исчерпаны. Резервы времени работ, лежащих на других (немаксимальных по длительности) путях, проходящих через эту работу, сократятся соответственно на величину использованного резерва.
Остальные резервы времени работы являются частями её полного резерва.
Частный резерв времени первого вида есть часть полного резерва времени, на которую можно увеличить продолжительность работы, не изменив при этом позднего срока её начального события. Этим резервом можно располагать при выполнении данной работы в предположении, что её начальное и конечное события свершаются в свои самые поздние сроки.
Частный резерв времени второго вида , или свободный резерв времени работы представляет часть полного резерва времени, на которую можно увеличить продолжительность работы, не изменив при этом раннего срока её конечного события. Этим резервом можно располагать при выполнении данной работы в предположении, что её начальное и конечное события свершатся в свои самые ранние сроки.
Свободным резервом времени можно пользоваться для предотвращения случайностей, которые могут возникнуть в ходе выполнения работ. Если планировать выполнение работ по ранним срокам их начала и окончания, то всегда будет возможность при необходимости перейти на поздние сроки начала и окончания работ.
Независимый резерв времени работы - часть полного резерва времени, получаемая для случая, когда все предшествующие работы заканчиваются в поздние сроки, а все последующие работы начинаются в ранние сроки.
Использование независимого резерва времени не влияет на величину резервов времени других работ. Независимые резервы стремятся использовать тогда, когда окончание предыдущей работы произошло в поздний допустимый срок, а последующие работы хотят выполнить в ранние сроки. Если величина независимого резерва равна нулю или положительна, то такая возможность есть. Если же эта величина отрицательна, то этой возможности нет, так как предыдущая работа ещё не оканчивается, а последующая уже должна начаться. То есть отрицательное значение этой величины не имеет реального смысла. Фактически независимый резерв имеют лишь те работы, которые не лежат на максимальных путях, проходящих через их начальные и конечные события.
Таким образом, если частный резерв времени первого вида может быть использован на увеличение продолжительности данной и последующих работ без затрат резерва времени предшествующих работ, а свободный резерв времена - на увеличение продолжительности данной и предшествующих работ без нарушения резерва времени последующих работ без нарушения резерва времени последующих работ, то независимый резерв времени может быть использован для увеличения продолжительности только данной работы.
Работы, лежащие на критическим пути, так же как и критические события, резервов времени не имеют.
Рисунок 3. Ключ к расчёту секторным методом
Следует отметить, что в случае достаточно простых сетевых графиков кроме табличного метода расчета параметров сетевых графиков, может быть применено секторное представление временных параметров, то есть расчет параметров может быть произведен на самом графике. Каждое событие для этого делится на четыре сектора. В левом секторе события записывают раннее начало работы, в правом - позднее окончание, в верхнем - номер данного события, в нижнем - номер предшествующего события, из которого к данному событию идёт путь максимальной продолжительности. Имеет место, когда в нижнем секторе ставят номер события и верхний сектор не заполняют. Определённые резервы времени записывают под стрелкой в виде дроби: в числителе общий резерв, а в знаменателе частный резерв.
Сетевой график 5. Секторное представление временных параметров
Реально на практике продолжительность работ, фактическое их состояние могут изменяться. При этом может изменяться и ожидаемое время наступления события, окончания работ и критический путь. Зная критический путь, руководство может сосредоточиться на тех работах, которые являются решающими с точки зрения сроков окончания всех работ.
Анализ и оптимизация сетевого графика
После нахождения критического пути и резервов времени работ и оценки вероятности выполнения проекта в заданный срок должен быть проведён всесторонний анализ сетевого графика и приняты меры по его оптимизации. Этот весьма важный этап в разработке сетевых графиков раскрывает основную идею СПУ. Он заключается в приведении сетевого графика в соответствие с заданными сроками и возможностями организации, разрабатывающей проект.
Оптимизация сетевого графика в зависимости от полноты решаемых задач может быть условно разделена на частную и комплексную. Видами частной оптимизации сетевого графика являются: минимизация времени выполнения комплекса работ при заданной его стоимости; минимизация стоимости комплекса работ при заданном времени выполнения проекта. Комплексная оптимизация представляет собой нахождение оптимального соотношения величин стоимости и сроков выполнения проекта в зависимости от конкретных целей, ставящихся при его реализации.
Вначале рассмотрим анализ и оптимизацию календарных сетей, в которых заданы только оценки продолжительности работ.
Анализ сетевого графика начинается с анализа топологии сети, включающего контроль построения сетевого графика, установление целесообразности выбора работ, степени их расчленения.
Затем проводятся классификация и группировка работ по величинам резервов. Следует отметить, что величина полного резерва времени далеко не всегда может достаточно точно характеризовать, насколько напряжённым является выполнение той или иной работы некритического пути. Всё зависит от того, на какую последовательность работ распространяется вычисленный резерв, какова продолжительность этой последовательности.
Определить степень трудности выполнения в срок каждой группы работ некритического пути можно с помощью коэффициента напряжённости работ.
Коэффициентом напряжённости работы называется отношение продолжительности несовпадающих, но заключённых между одними и теми же событиями, отрезков пути, одним из которых является путь максимальной продолжительности, проходящий через данную работу, а другим - критический путь.
Этот коэффициент может изменяться в пределах от 0 (для работ, у которых отрезки максимального из путей, не совпадающие с критическим путём, состоят из фиктивных работ нулевой продолжительности) до 1 (для работ критического пути).
Обратим внимание на то, что больший полный резерв одной работы (по сравнению с другой) не обязательно свидетельствует о меньшей степени напряжённости её выполнения. Это объясняется разным удельным весом полных резервов работ в продолжительности отрезков максимальных путей, не совпадающих с критическим путём.
Вычисленные коэффициенты напряжённости позволяют дополнительно классифицировать работы по зонам:
Ø критическая К > 0,8,
Ø подкритическая 0,6 < К < 0,8,
Ø резервная К < 0,6.
Оптимизация сетевого графика представляет процесс улучшения организации выполнения комплекса работ с учётом срока его выполнения. Оптимизация проводится с целью сокращения длины критического пути, выравнивания коэффициентов напряжённости работ, рационального использования ресурсов.
В первую очередь принимаются меры по сокращению продолжительности работ, находящихся на критическом пути. Это достигается:
Ø перераспределением всех видов ресурсов, как временных (использование резервов времени некритических путей), так и трудовых, материальных, энергетических, при этом перераспределение ресурсов должно идти, как правило, из зон, менее напряжённых, в зоны, объединяющие наиболее напряжённые работы.
Например, можно увеличить сменность работ на «узких» участках строительства. Это мероприятие наиболее эффективно, поскольку позволяет добиться нужного результата при тех же ведущих машинах (экскаваторе, станке и т.д.), только увеличив численность рабочих.
Ø сокращением трудоёмкости критических работ за счёт передачи части работ на другие пути, имеющие резервы времени;
Ø пересмотром топологии сети, изменением состава работ и структуры сети.
Ø обеспечить проведение параллельных (совмещенных) работ;
Ø разделить широкий фронт работ на более мелкие захватки или участки;
Ø уменьшить продолжительность программы можно путем изменения применяемой технологии, например, в строительстве, заменой монолитных железобетонных конструкций сборными, другими сборными элементами, изготавливаемыми на заводе.
Проводя корректировку графика надо иметь в виду, что рабочих насыщают ресурсами до определенного предела (чтобы каждый рабочий был обеспечен достаточным фронтом работ и имел возможность соблюдать правила техники безопасности).
В процессе сокращения продолжительности работ критический путь может измениться, и в дальнейшем процесс оптимизации будет направлен на сокращение продолжительности работ нового критического пути и так будет продолжиться до получения удовлетворительного результата. В идеале длина любого из полных путей может стать равной длине критического пути или по крайней мере пути критической зоны. Тогда все работы будут вестись с равным напряжением, а срок завершения проекта существенно сократится.
Самый очевидный вариант частной оптимизации сетевого графика с учётом стоимости предполагает использование резервов времени работ. Продолжительность каждой работы, имеющей резерв времени, увеличивают до тех пор, пока не будет исчерпан этот резерв или пока не будет достигнуто верхнее значение продолжительности. Продолжительность каждой работы целесообразно увеличить на величину такого резерва, чтобы не изменить ранние сроки наступления всех событий сети, то есть на величину свободного резерва времени.
На практике при попытках эффективного улучшения составленного плана неизбежно введение дополнительно к оценкам сроков фактора стоимости работ. Проект может потребовать ускорения его выполнения, что, естественно, отразится на стоимости: она увеличится. Поэтому необходимо определить оптимальное соотношение между стоимостью проекта и продолжительностью его выполнения.
При использовании метода «время–стоимость» предполагают, что уменьшение продолжительности работы пропорционально возрастанию её стоимости. Возрастание стоимости при уменьшении времени называется затратами на ускорение .
Весьма эффективным является использование метода статистического моделирования, основанного на многократных последовательных изменениях продолжительности работ (в заданных пределах) и «проигрывании» на компьютере различных вариантов сетевого графика с расчётами всех его временных параметров и коэффициентов напряжённости работ.
Например, можно взять в качестве первоначального план, имеющий минимальные значения продолжительности работ и, соответственно, максимальную стоимость проекта. А затем последовательно увеличивать продолжительность выполнения комплекса работ путём увеличения продолжительности работ, расположенных на некритических, а затем и на критическом (критических) пути до удовлетворительного значения стоимости проекта. Соответственно, можно взять за исходный план, имеющий максимальную продолжительность работ, а затем последовательно уменьшать их продолжительность до такого приемлемого значения продолжительности проекта.
Процесс «проигрывания» продолжается до тех пор, пока не будет получен приемлемый вариант плана или пока не будет установлено, что все имеющиеся возможности улучшения плана исчерпаны и поставленные перед разработчиком проекта условия невыполнимы.
В настоящее время на практике сеть вначале корректируют по времени, т. е. приводят ее к заданному сроку окончания строительства. Затем приступают к корректировке графика по критерию распределения ресурсов, начиная с трудовых ресурсов.
Следует заметить, что при линейной зависимости стоимости работ от их продолжительности задача построения оптимального сетевого графика может быть сформулирована как задача линейного программирования , в которой необходимо минимизировать стоимость выполнения проекта при ограничении, во-первых, продолжительности каждой работы в установленных пределах, а, во-вторых, продолжительности любого полного пути сетевого графика не более установленного срока выполнения проекта.
Построение сетевого графика в масштабе времени
В практике получили распространение сетевые графики, составленные в масштабе времени с привязкой к календарным срокам. При контроле над ходом работ такой график позволит быстро найти работы, выполняемые в определённый период времени, установить их опережение или отставание и в случае необходимости перераспределять ресурсы.
Сетевой график, составленный в масштабе времени, даёт возможность построить графики потребности в ресурсах и тем самым установить соответствие их фактическому наличию. Построение сетевого графика в масштабе времени производится по ранним началам или поздним окончаниям работ и идёт последовательно от исходного события до завершающего.
Привязку сетевого графика к календарю удобно производить при помощи календарной линейки, в которую записываются годы, месяцы и числа (без выходных и праздничных дней). Пользуясь таблицей, можно легко найти календарную дату начала или окончания работы.
Сетевой график 6. Сетевой график в масштабе времени
В случаях изменений исходных данных и фактического хода работ, сетевой график, составленный применительно к масштабу, вызывает усложнения при его корректировке. Поэтому такой метод применим для сравнительно небольших сетевых графиков.
Заключение
На основании вышеизложенного можно утверждать, что методы сетевого планирования и управления обеспечивают руководителей и исполнителей на всех участках работы обоснованной информацией, которая необходима им для принятия решений по планированию, организации и управлению. А при использовании вычислительной техники СПУ является уже не просто одним из методов планирования, а автоматизированным методом управления производственным процессом.
Используемые источники
1. webforum. land. ru – форум по управлению проектами в России.
Репетиторство
Нужна помощь по изучению какой-либы темы?
Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку
с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.