Мускульный плавающий махолет "лебедушка". Махолет на мускульной силе От игры до науки

Мускульный плавающий махолет "лебедушка". Махолет на мускульной силе От игры до науки

Почему люди не летают как птицы? Еще как летают: аэродинамика у самолета почти та же, что и у пернатых, хотя над полностью «морфируемым», изменяемым крылом люди еще работают. В полете мы достигли больших высот. Если пересчитать на килограммы массы и километры полета, современный авиалайнер тратит энергии меньше, чем птица.

Древняя, как весь наш род, мечта летать как птица - то есть свободно махая крыльями - остается невоплощенной. Мечта эта так сильна, что хотя до сих пор ни одна авиакомпания и ни одна армия мира не эксплуатирует ни единого орнитоптера, действующая Конвенция о международной гражданской авиации включает его определение: «Воздушное судно тяжелее воздуха, которое поддерживается в полете в основном за счет реакций воздуха с его плоскостями, которым придается маховое движение».

От самолета до вертолета

Впрочем, у мечты о маховом полете есть и практическая сторона. Аэродинамическое качество - отношение подъемной силы к лобовому сопротивлению, которое определяет эффективность полета - у самолетов исключительно высоко. Но самолеты требуют дорогих и сложных аэродромов, больших взлетно-посадочных полос. Вертолеты в этом смысле удобнее, они взлетают и садятся вертикально, не требуя для этого какой-либо инфраструктуры. Они намного маневреннее и даже способны зависать неподвижно. Но аэродинамическое качество вертолетов невысоко, и час их полетного времени стоит совсем недешево.

Попыток скрестить одно с другим делается немало - у винтокрылых автожиров и конвертопланов есть свои поклонники. Для решения некоторых узких задач эти летательные аппараты могут быть даже незаменимы. Но все-таки такие гибриды оказываются не слишком удачными: известна шутка о том, что они соединили не столько достоинства, сколько ключевые недостатки и самолетов, и вертолетов. Но вот махолеты могут оказаться подходящим решением. Теоретически, они сумеют взлетать с места, будут маневренны вплоть до способности зависать в воздухе и смогут демонстрировать почти самолетное аэродинамическое качество.

Но первые неловкие воздухоплаватели задумывались, конечно, не о самолетах, которых еще вовсе не было, а о птицах. Казалось, что достаточно научиться отталкиваться от воздуха крыльями - и человек полетит. С такими взглядами, конечно, никто из них так и не смог оторваться от земли. Крылатые механические приспособления в лучшем случае позволяли неловко планировать, как это проделал легендарный монах-бенедиктинец Эйлмер, который около тысячи лет назад сиганул с башни Малмсберийского аббатства в Англии, получив тяжелые травмы.

Крошечные орнитоптеры разрабатываются в разных странах мира. Как правило, авторы их пытаются с большей или меньшей точностью сымитировать природу, повторив конструкцию летающего насекомого. В мае 2015 года Питер Эббил и Роберт Дадли из лаборатории биомиметических миллисистем Университета Беркли продемонстрировали весьма эффектный взлет 13,2-граммового махолета с «пусковой установки» на спине шестиногого микроробота.

От птицы до насекомого

Причина многочисленных неудач понятна: саму сущность полета в те годы представляли достаточно смутно. Подъемную силу птицам дает не опора на воздух, а особый контур профиля крыла. Разделяя набегающий поток надвое, он заставляет воздух над верхней кромкой двигаться быстрее, чем над нижней. По закону Бернулли, давление будет выше в области с более медленным потоком. Возникающая разница между давлением под крылом и над ним создает подъемную силу. Но стоит начать махать крыльями - и эта ясная картина полностью меняется.

Известная поговорка гласит, что «по законам аэродинамики шмели вообще не могут летать». В принципе, это справедливо: с точки зрения классической аэродинамики насекомые и их крылья - это нечто несусветное. Даже в теории они неспособны создать подъемную силу и тягу, необходимые для полета, - если только мы не перейдем от классической аэродинамики планера к новой, нестационарной. Здесь все иначе: турбулентные завихрения, с которыми конструкторы самолетов борются не покладая рук, становятся ключом к полету и шмеля, и его родственников.

Крупные птицы используют взмахи лишь изредка - например, когда необходимо затормозиться для посадки или взлететь. Эти взмахи плюс движения ног позволяют им получить направленную вперед тягу, для того чтобы в действие вступила подъемная сила крыла. Насекомые же машут крыльями постоянно, причем по особой траектории, скорее вперед-назад, чем вверх-вниз. В сочетании с гибкостью крыльев и достаточной частотой взмахов это создает у их передней кромки турбулентные завихрения, которые «сбрасываются» с края крыла в верхней и нижней точках. Они и создают достаточную для полета шмеля подъемную силу и тягу.

Меняя скорость первой и второй фаз движения, насекомое контролирует направление этих сил, маневрируя в воздухе. И даже щетинки, бугры и неровности на поверхности крыла - отличие от обтекаемого крыла самолета - работают на образование турбулентных вихрей.

От Москвы до Торонто

Этих тонкостей не знали долго и до конца не понимают до сих пор. Но оказалось, что в простейшем случае это и необязательно. Еще до Второй мировой войны немецкие авиаконструкторы с успехом запускали небольшие легкие орнитоптеры, использующие для привода скрученный резиновый жгут. Увлечению ими отдал дань даже знаменитый аэродинамик Александр Липпиш, а в 1930-х Эрику фон Хольсту удалось оторвать от земли орнитоптер, на который был установлен двигатель внутреннего сгорания. Однако создать аппарат, который можно было бы рассматривать как прототип чего-нибудь полезного, способного нести хотя бы одного человека или груз, тогда так и не удалось. В 1960-х Персифаль Спенсер продемонстрировал полет «орниплана» с размахом крыльев 2,3 м и крошечным (объемом 5,7 см3) двухтактным двигателем - пилотировался он оператором, по кабелю.

Более крупный махолет взлетел лишь в начале 1980-х, когда профессор Московского авиационного института Валентин Киселев сконструировал семикилограммовый аппарат, способный самостоятельно стартовать и оставаться в полете. Со временем модель освободилась от кабеля и управлялась по радиосвязи. По следам Киселева в этой работе двигался его заокеанский коллега Джеймс Делориер. В 1991 году Делориер получил диплом Международной федерации аэронавтики за создание «первого оснащенного двигателем и дистанционно управляемого орнитоптера». В 2006 году его модель UTIAS Ornithopter No.?1 взлетела, а вскоре поднялся в воздух и пилотируемый махолет Snowbird - за 14 секунд он пролетел около 300 м на мускульной тяге пилота.

«Это не совсем честный результат, - поясняет ученик профессора Киселева, выпускник МАИ Андрей Мельник. - Я знаком с этими конструкциями, и их нельзя считать махолетами в полном понимании этого слова. Первый аппарат оснащался реактивным двигателем для создания тяги и взлета. А второй продемонстрировал еще одну важную вещь: что мускульной силы человека для машущего полета недостаточно. Даже подготовленному пилоту, спортсмену, и то удалось пролететь совсем немного».

Возвратно-поступательное движение
поршней двигателя трансмиссия преобразует во вращательное движение зубчатых колес, а кривошипно-шатунная передача превращает его снова в возвратно-поступательные взмахи крыльев. Изобретатели мечтают о том, чтобы сделать эту схему эффективнее, напрямую передавая движения поршней крыльям.

От игры до науки

Надо сказать, что если «полезный» машущий полет не удается освоить до сих пор, то игровая индустрия чувствует себя в этой области уже вполне уверенно. Первые небольшие модели на резинке появились в продаже еще в конце XIX века, а сегодня одну из популярных игрушек с машущими крыльями, электромотором и на радиоуправлении предлагает компания-разработчик игрушечных роботов WowWee.

«Я сам начинал с авиамоделирования, - говорит Андрей Мельник, - поэтому представляю, насколько требовательны самолеты к мастерству пилота, управляющего ими с земли. Буквально одно неловкое движение - и он заваливается в штопор или в крен. И я могу сказать, что мой опыт управления нашим махолетом показывает, что с этим аппаратом справится даже ребенок. Он получился у нас настолько устойчивым, что легко прощает все ошибки и остается в воздухе».

Средства в разработку нового типа летательных аппаратов при довольно сомнительных перспективах вкладывают неохотно. Однако Андрею Мельнику и Дмитрию Шувалову удалось убедить инвесторов, что благодаря современным технологиям и при должных вложениях махолет можно создать. «Нам удалось нащупать несколько принципиальных моментов, которые прежде, в том числе и когда я работал с профессором Киселевым, понимались неверно, - добавляет конструктор. - Первые наши модели просто разваливались, не выдерживая нагрузки. Так вот, предполагалось, что такую нагрузку на аппарат создают аэродинамические силы. Однако испытания показали, что это не так, и основное воздействие он испытывает из-за инерции машущих крыльев».

Выяснив причины неудач, разработчики максимально снизили вес крыла - до 600 г при площади 0,5 м2 - и демпфировали его воздействие на фюзеляж. «Настоящим сюрпризом для нас стали результаты моделирования, которые показали, что аэродинамический центр четырехкрылого аппарата находится не где-то между передней и задней парой крыльев, а позади них, - вспоминает Андрей Мельник. - Чтобы решить эту проблему, пришлось изменить геометрию переднего и заднего оперений. Но в результате махолет стал уверенно держаться в воздухе».

От практики до теории

Первый полет махолета состоялся в 2012 году, когда аппарат, еще почти неуправляемый, пролетел около 100 м. Его жесткие композитные крылья приводились в движение небольшим двигателем с кривошипно-шатунной передачей. А спустя еще полгода усовершенствованная 29-килограммовая версия оставалась в воздухе уже столько времени, на сколько хватало полулитрового топливного бака - 10−15 минут. На свой махолет разработчики оформили патент РФ №?2488525.

«Помимо прочего, мы столкнулись еще и с проблемой управления, - продолжает Андрей Мельник. - По вертикали махолет отклонялся и управлялся надежно, с помощью рулей высоты на хвостовом оперении. А вот чтобы менять курс еще и по горизонтали, нам пришлось установить на крыльях дополнительные законцовки. Меняя их положение, стало возможным полностью управлять аппаратом в полете, по радиоканалу».

Надо сказать, что вертикально махолет все-таки не взлетает, хотя для разбега ему требуется очень короткая полоса. Всего 5−10 м - и он уходит в отрыв. Эту цифру можно еще уменьшить, однако для создания настоящей полноразмерной модели конструкцию придется серьезно усовершенствовать. По словам Андрея Мельника, прежде всего требуется отказаться от кривошипно-шатунного механизма, не слишком удачного для создания машущих движений крыльями. Он порождает слишком опасные инерционные силы, которые особенно велики в верхней и нижней «мертвых точках» колебания. «Если мы возьмем другой привод, который способен накапливать энергию последних фаз движения и затем использовать ее для движения в обратном направлении, то он будет гораздо эффективнее, - говорит конструктор. - Это может быть, например, пневматический механизм, такие задумки у нас есть».

«Хуже всего то, что мы так и не понимаем в точности, как же он летает, - продолжает Андрей Мельник. - И по образованию, и по навыкам мы - практики, конструкторы, а не теоретики, не ученые. Но мы точно можем сказать, что обычные теоретические модели для махолета не подходят, и наши испытания это подтвердили. В частности, коэффициент подъемной силы у нас оказался в разы больше, чем у типичного самолетного крыла. Почему? Надеюсь, кто-нибудь разберется». Быть может, все действительно произойдет в обратном порядке: выяснив, как летает махолет, мы, наконец, разберемся и в машущем полете птиц и насекомых.

Изобретение относится к летательным и плавательным аппаратам. Мускульный плавающий махолет, содержащий фюзеляж (110), крылья (82), шасси, привод крыльев, пружины, силовую раму с шарнирно соединенным взлетно-посадочным устройством, сиденье-ложе, каретку корней крыльев, корни крыльев, устройство автоматической установки угла атаки крыльев, хвостовое оперение. Взлетно-посадочное устройство состоит из патронов (15), в которых находятся пружины взлета (16), которые при взлете и при посадке уперты в упоры на штоке привода и при посадке используемые как заряжающий амортизатор. На патронах шарнирно закреплены рычаги зарядки и рычаги удержания пружин взлета, освобождающие при взлете пружины взлета для взмаха крыльями и отталкивания махолета от поверхности. Крылья выполнены с возможностью их фиксирования как парусов для плаваний. Изобретение расширяет функциональные возможности за счет использования крыльев как парусов и энергии заряженных пружин привода. 11 з.п. ф-лы, 8 ил.

Рисунки к патенту РФ 2304546

Изобретение относится к летательным на основе машущего крыла и плавательным на основе фиксирования крыльев как паруса и привода емкостного шасси аппаратам за счет собственных мускульных энергий человека, энергий заряженных пружин во взлетных устройствах аппарата и использования энергий окружающей среды: ветров, восходящих потоков теплового воздуха, воздушных атмосферных течений, а также лифтов высотных сооружений и домов, приспособленных взлетно-посадочных площадок на их верхних перекрытиях и прочее.

Известна защищенная патентом РФ 2129076 от 20.04.99 г. конструкция махолета Цибульникова Сергея Ивановича. Махолет, приводимый в действие мускульной энергией человека, содержит корпус, к которому присоединены шарнирно полужесткие крылья; приводную систему крыльев махолета с точкой привода "В"; резонансно-приводную систему крыльев, соединенную с точкой привода "В"; устройство механической колебательной системы с приводом колес шасси, соединенное с точкой привода "В". Пилот, сидя в кабине и работая ногами, при всех возможностях накапливания предвзлетной энергии не в состоянии разогнать махолет для взлета и тем более для полета из-за малой энергии, тратящейся на крылья, и двух резонансных систем, и не эффективной конструкции махолета.

Для освоения свободного полета в воздушном пространстве на основе машущего полужесткого крыла и плавания на водных просторах на основе фиксирования крыльев как паруса и привода емкостного шасси, за счет собственных мускульных энергий человека, энергий заряженных пружин во взлетных пружинах во взлетных устройствах аппарата и использовании энергий окружающей среды: ветров, восходящих потоков теплого воздуха, воздушных атмосферных течений, а также лифтов высотных сооружений и домов, приспособленных взлетно-посадочных площадок на их верхних перекрытиях и прочее, предлагается аппарат - плавающий махолет "Лебедушка".

На плавающем махолете пилот совершает взлет и посадку с грунтовой и водной поверхности и имеет режимы полета и плавания с маневрированиями: машущий, автомашущий, планирующий, скоростной, плавания.

Для реализации этих задач плавающий махолет имеет разборную силовую раму с взлетно-посадочным устройством; устройство узла сиденья-ложа; устройство узла каретки корня крыла; устройство узла корня крыла; устройство узла автоматического угла атаки крыла; устройство узла привода крыла; пружину автомаха; устройство узла крыла; устройство узла фюзеляжа; устройство узла емкостного шасси; устройство узла хвостового оперения.

Конструкция силовой рамы состоит из боковых пластин щечек, по одному слева и справа, с вертикальным расположением плоскостей, приподнятыми и круглыми спереди, имеющими посадочные отверстия в середине для подшипников качения каретки корней крыльев. Щечки спереди соединены между собой трубой фланцами с выходящими концами. Концы трубы силовой рамы имеют пластины для соединения с шпангоутом фюзеляжа. Сзади щечки соединены уголком, концы которого соединены с шпангоутом фюзеляжа. На середине уголка силовой рамы имеется спинной упор для подпора сиденья-ложа. На трубе силовой рамы крепятся два хомута. На хомутах шарнирно закреплены качалки для ног. Качалки соединены планкой жесткости. На круглых плоскостях щечек внутри имеются сменные, по мере износа, радиальные шлицевые пластины для фиксации каретки корней крыльев и соответственно одно из трех направлений взмахов крыльями. Снаружи круглых плоскостей щечек имеются сменные, по мере износа, радиальные направляющие "ласточкин хвост" или другого типа для ползунков угольников привода крыльев. Снаружи радиальные направляющие имеют шлицевую поверхность для фиксации угольников привода крыльев. Внутри на щечках силовой рамы в нижней части имеется полочка и по одному прямоугольному вырезу для регулирования сиденья-ложа пилота по его росту относительно педалей привода крыльев и его крепления /фиксации/ на силовой раме. Все соединения силовой рамы болтовые или сварные в зависимости от показаний эксплуатации аппарата.

Снаружи силовой рамы с обеих сторон в нижней части щечек имеются упоры с ушками. В ушках имеются отверстия для шарнирного соединения взлетно-посадочного устройства, которые состоят из патронов. Патроны тоже имеют ушки для шарнирного соединения с упорами щечек. В верхней части патрона свободно вращается остальная часть патрона, это позволяет легко укладывать устройство под сиденье-ложе. В патроны вставляются пружины. На патронах в нижней части имеются ушки с отверстиями для шарнирного крепления рычагов зарядки пружин взлета и рычагов удержания витков пружин. Рычаг зарядки имеет на конце собачку для захвата витка пружины и передачи на собачку рычага удержания витков сжатой пружины. Для освобождения пружин при взлете рычаги имеют связь тросиком с приводом маха крыльев. При взлете от привода маха крыльев тросик отводит рычаги зарядки и удержания витков от пружины взлета, пружина, освобождаясь, давит на колесо привода и происходит резкий взмах крыльями и отталкивание аппарата от взлетаемой поверхности. Это поднимает пилота с аппаратом на большую высоту с последующими взмахами крыльев пилотом. При посадке пружины взлета используются как амортизаторы и заряжаются для следующего взлета.

Конструкция сиденья-ложа имеет ось из трубы. Ось фиксируется между щечек в прямоугольных вырезах сухарями. Внутренние сухари приварены к оси по размеру между щечками, а наружные сухари надеваются на ось. На концах оси выполнена резьба и зажимаются сухари гайками с ручкой, как барашек. На оси в середине шарнирно закреплено велоседло с мини-спинкой. Спинка имеет постоянный прямой угол относительно седла. По краям велоседла на оси шарнирно закреплено убирающееся простое сиденье с ригельным креплением за выступ полочки на щечке, управляемое ручкой фиксации. По краям простого сиденья на оси шарнирно закреплена П-образная труба для упора спины пилота. К середине П-образной трубы приварена труба длиной в рост сидящего пилота. Эта трубочка является осью для туловища пилота и головы. Ложе на оси поворачивается влево и вправо для хорошего обзора обеих сторон и удобства. На этой оси шарнирно закреплена пластина спинно-грудного пояса с концевыми упорами туловища пилота с левой и правой стороны и пластина с плечевыми упорами и подголовниками. В конце трубы в ушках проходит ось для распорного ролика. Ролик служит для распора /прогиба/ верхнего стрингера фюзеляжа при полете стоя и сидя. Конструкция сиденья-ложа позволяет пилоту осуществлять привод крыльев в стоячем, сидячем и лежачем положениях с уменьшением миделевого сечения фюзеляжа.

Для шарнирного крепления корней крыльев и изменения направления маха крыльев в аппарате имеется каретка корней крыльев. Конструкция каретки состоит из П-образной трубы по высоте щечек от центра круга щечек силовой рамы, концы которой разведены в разные стороны по одной прямой и служат осью каретки и угольников привода крыльев. К основанию П-образной трубы с обеих сторон приварена еще П-образная большая труба, выгнутая вверх до уровня малой П-образной трубы, с расстоянием между верхних труб, в котором помещаются оси корней крыльев с корпусом устройства автоматического угла атаки крыльев. Приварены еще распорки по обеим сторонам от верха малой П-образной трубы и к низу, ближе к середине большой П-образной трубы. Вверху малой П-образной трубы на середине имеется хомут. К хомуту на малом расстоянии по разные стороны от середины приварены две трубочки, которые служат осью корней крыльев, а другие концы трубочек закреплены в круглых вырезах устройства корпуса угла атаки крыльев. По краям малой П-образной трубы и к большей П-образной трубе возле распорок приварены устройства фиксаторов положения каретки, имеющие ригеля сцепления со шлицевой поверхностью радиальных пластинок силовой рамы. Все они спарены и управляются ручкой фиксации каретки. К каретке в середине приварен корпус устройства для автоматической установки угла атаки крыла с кожухом для пружины угла атаки и кожухом для пружины маха крыла. Дно корпуса устройства для установки угла атаки крыла имеет для сцепления рычага угла атаки шлицевую поверхность.

Устройство узла корня крыла состоит из корневой втулки, посаженный шарнирно на ось каретки корня крыла за счет роликов между осью и корневой втулкой. Под прямым углом между корневой втулкой и цапфой имеются косынки верхняя и нижняя, приваренные одним концом к втулке и другим концом к цапфе. На верхних косынках находятся ручки управления площадью поверхности крыла /натягом/, стреловидностью крыльев, шарнирами лонжеронов. Внутри между косынок находятся барабаны для тросов. В цапфе шарнирно находится корневой лонжерон за счет роликов между корневым лонжероном и цапфой. Корневой лонжерон одного крыла со стороны центра каретки корней крыла соединен шарниром со стержнем рычага угла атаки крыла, а лонжерон другого соединен с другим стержнем этого же рычага угла атаки крыла. Два стержня рычага шарнирно сидят в корпусе рычага угла атаки крыла. В корпусе рычага имеется ригель сцепления со шлицевой поверхностью дна корпуса устройство угла атаки. Ненужные заданному углу атаки крыла бороздки шлицевой поверхности покрываются пластинками, лежащими в бороздках, за счет поднятия их рычажками управления. На ригель сверху в корпусе рычага угла атаки давит пружина для удержания сцепления рычага угла атаки крыла за дно корпуса устройства угла атаки. Сверху к ригелю прикреплены два тросика, один связывает через ролик ушко цапфы сверху, а другой - ушко цапфы снизу. К рычагу угла атаки крыла сцеплена пружина угла атаки крыла. Пружина имеет свой кожух, приваренный к корпусу устройства угла атаки крыла, и другим концом приварен к трубе жесткости каретки.

Устройство узла привода крыла. На свободный конец цапфы надет хомут и затянут на шарнирный крестовой болт. Болт является осью шатуна привода цапфы, то есть корня крыла. Другой конец шатуна шарнирно соединен с первым концом угольника привода крыла. Угольник привода крыла имеет ползун в радиальной направляющей на щечке силовой рамы и фиксатор, входящий в шлицы поверх радиальных направляющих. Первый конец угольника привода корня крыла шарнирно соединен с первым отрезком штока привода, длиной до второго конца угольника привода корня крыла. На первом отрезке штока привода имеются ручки управления всего штока. К первому отрезку штока шарнирно присоединен второй отрезок штока. Второй конец угольника имеет ползун в радиальной направляющей на щечке силовой рамы и крепление для шарнира штока первого отрезка со вторым отрезком штока. На другом конце второго отрезка штока имеется педаль для ступни пилота, а выше педали на штоке имеется упор для взлетной пружины. Второй отрезок штока регулируется по длине за счет вхождения его звеньев друг в друга с фиксацией необходимой длины. Второй отрезок штока имеет шарнир для сгиба штока в середину для спаривания педалей привода при автомахе и привода ногами.

Для осуществления полета плавающего махолета аппарат имеет крылья. Крылья используются и для плавания на водных просторах как паруса. Крыло состоит из плечевого лонжерона, шарнирно соединенный через вертикальный шарнир с корневым лонжероном /корнеплечевой шарнир/. На плечевом лонжероне имеется хомут с ушками по обе стороны лонжерона. К ушкам хомута прикреплены тросики с обеих сторон. Один тросик идет на передний ролик поперечины корневого лонжерона для управления обратной стреловидностью крыла. Другой тросик идет на задний ролик поперечины корневого лонжерона для управления прямой стреловидностью крыла. Для прямого размаха крыльев натяжения обоих тросиков одинаково. Далее по плечевому лонжерону еще имеется хомут с ушком вперед. В ушке находится ось рычага натяга площади крыла. Рычаг натяга площади крыла имеет малое плечо, шарнирно соединенное с толкателем натяжителя конца крыла. Большое плечо рычага натяга площади крыла на расстоянии малого плеча от оси имеет хомут с ушком в сторону фюзеляжа, шарнирно соединенный с малым толкателем натяга конца крыла возле фюзеляжа. Конец рычага большого плеча тросиком связан с управлением натяжения площади крыла. Конец плечевого лонжерона имеет крестовый шарнир, который связан с локтевым лонжероном /плечелоктевой шарнир/. К крестовому шарниру прикрепляется шарнир с замками с двух сторон шарнира, закрепляющий пленочное полотно крыла. Этот поперечный шарнир крыла идет поперек всей площади крыла и соединяется с шарниром толкателя натяжителя конца крыла для образования маха полукрылом и межкрылового пазуха при взмахе крыльями вверх. Это для того, чтоб не передавался вес крыла фюзеляжу и для сохранения энергии, так как полкрыла взлетает само от набегающего потока воздуха. Другой конец поперечного шарнира крепится к передней кромке крыла. На натяжителе конца крыла посередине имеется хомут с ушками в сторону фюзеляжа для шарнирного соединения с толкателем натяжителя конца крыла. Натяжитель шарнирно соединен с локтевым лонжероном. Крылофюзеляжный пазух состоит из двух натяжителей поверхности пазуха крыла, исходящих из корнеплечевого шарнира с подпружиниванием контурного натяжителя для прижима к фюзеляжу, а другой натяжитель прямой с ушками около середины для шарнирного соединения толкателя, находящегося между натяжителями. На контурном натяжителе имеется ступенчатый упор для толкателя. Толкатель соединен тросиком, который идет на барабан регулировки натяжения поверхности пазуха. Пленочное полотно, образующее поверхность пазуха, свисает с пазуха и является клапаном в зазорах между крылом и пазухом, пазухом и фюзеляжем. К передней кромке крыла крепится крылышко для предотвращения срыва потока воздуха с крыла и увеличения скорости воздуха над крылом. В конце пленочного полотна крыла имеются аэродинамические щели для создания реактивных струй после крыла, это придает большую эффективность в скорости и подъемной силе аппарата.

Для удобства, комфорта и сохранения механизмов от внешней среды: пыли, грязи, дождя, снега, мороза, жары, и увеличения скорости полета плавающий махолет имеет фюзеляж с изменяющимся миделевым сечением и складывающимся емкостным шасси. Емкостное шасси позволяет пилоту осуществлять взлет, полет, посадку и плавание стоя. Фюзеляж крепится к отходящим концам трубы и угольника силовой рамы, на которые приварены пластины с отверстиями, и имеющиеся отверстия на шпангоутах фюзеляжа позволяют соединять болтами. Фюзеляж состоит из носового наконечника, обруча-шпангоута переднего и заднего, четырех контурных шпангоутов из пластин и двух шпангоутов с крыльевыми пазами. Роль верхнего смотрового окна выполняют прозрачный гибкий люк, обрамленный швейным замком типа "молния". С обеих сторон фюзеляж связывают по четыре стрингера. Один верхний стрингер при положении пилота стоя или сидя находится в выпуклом наружу состоянии за счет распорного ролика, находящегося на верху оси сиденья-ложа, а при лежачем положении пилота верхний стрингер выпрямляется за счет проскальзывания в ушке заднего обруча-шпангоута и фюзеляж имеет меньший диаметр, то есть уменьшается миделево сечение. К заднему обручу-шпангоуту за счет узеньких пластин, выполняющих роль спиц, в центре приварена небольшая трубочка, служащая втулкой для оси хвостового оперения. К переднему и заднему обручу-шпангоуту снизу шарнирно по бокам закреплены по две трубы, называемые слегами. Снизу слег шарнирно закреплена упорно-взлетная площадка, имеющая по углам четыре колеса, которые на осях мини-стоек с пружинами отщелкиваются для становления на колеса или складывания их. Задние слеги имеют шарниры на расстоянии длины складывания под сиденье-ложе. Шарниры слег на фюзеляже имеют пружины для самоскладывания при отсутствии на них посторонних усилий. Весь каркас фюзеляжа с емкостным шасси герметично обтягивается легким, прочным, воздуховодонепроницаемым пленочным полотном.

Для управления курсом и высотой полета плавающего махолета, управления маневрами и торможением имеется хвостовое оперение. Хвостовое оперение состоит из продольного пустотелого валика, находящегося во втулке, которая приварена в центре заднего обруча-шпангоута фюзеляжа. К валику приварена вертикальная стойка-рычаг с внутренней стороны фюзеляжа для поворота хвостового оперения на одну четверть оборота для управления площадью хвостового оперения как в горизонтальном положении вверх-вниз, так и в вертикальном положении влево-вправо. Стойка-рычаг тросиком через ролики связана с ручкой управления. С наружной стороны к валику приварена вертикальная стойка с роликами на концах. К стойке приварена поперечная втулка для шарнирного крепления пакета хвостового оперения. В пакете хвостового оперения находятся оси перьев, на которых шарнирно крепятся перья для увеличения и уменьшения площади хвостового оперения, связанные между собой тросиком и подведенные к ручке управления.

На фигуре 1 показан плавающий махолет сбоку, с пилотом в полуприсесте, с крыльями в горизонтальном положении, с полуукладывающимся емкостным шасси при взмахе крыльями вверх или с полураскладывающимся емкостным шасси при взмахе крыльями вниз, с верхним приподнятым стрингером фюзеляжа и, следовательно, с большим диаметром фюзеляжа или миделевым сечением, с прямым хвостовым оперением. Пунктирная линия А показывает меньший диаметр фюзеляжа, при положении пилота лежа - пунктирная линия Б. Пунктирная линия Б показывает емкостное шасси, укладывающееся под сиденье-ложе пилота в днище фюзеляжа. Пунктирная линия Г показывает емкостное шасси при положении пилота стоя в полный рост.

На фигуре 2 показан плавающий махолет спереди, с пилотом в полуприсесте, с крыльями в горизонтальном положении. Пунктирная линия Д показывает дно фюзеляжа. Пунктирная линия Е показывает емкостное шасси при полном присесте пилота.

На фигуре 3 показан аппарат сверху. Сиденье-ложе для пилота в лежачем положении. Крыло с прямым размахом. Хвостовое оперение с изменяющейся площадью. Пунктирная линия Ж показывает крыло с обратной стреловидностью. Пунктирная линия З показывает крыло с прямой стреловидностью.

На фиг.4 показана силовая рама плавающего махолета с взлетно-посадочным устройством. Спереди на щечках силовой рамы показаны внутренние радиальные пластины со шлицами для фиксации каретки корней крыльев исходя от направления взмахов крыльями и снаружи щечек - радиальные направляющие типа "ласточкин хвост" или другого типа, пластинами для ползунов угольников привода крыльев и поверх их шлицы для фиксации угольников привода крыльев. Показаны еще спинной упор для сиденья-ложа, тросики связи рычагов-ручек зарядки пружин взлета со штоками второго колена привода крыльев.

На фиг.5 показано сиденье-ложе аппарата с креплением к силовой раме и имеющий велоседло, откидное простое сиденье с устройством его фиксации. На спинной оси ложа для поворота туловища пилота в ту или другую сторону имеется бедренная пластина с захватами, туловищная пластина с плечевыми упорами и подголовником. На конце спинной оси имеется распорный ролик для прогиба стрингера фюзеляжа.

На фиг.6 показана каретка корней крыльев, это рама с осями каретки и корней крыльев, с корпусом устройства угла атаки крыльев, с кожухами пружин угла атаки крыльев и пружины автомаха крыльев. Дно корпуса устройства угла атаки крыльев имеет сменную шлицевую пластину.

На фигуре 7 показано устройство корня крыла, устройство автоматического угла атаки крыльев, привода крыльев и автомаха крыльев.

На фиг.8 изображен каркас фюзеляжа и емкостного шасси с прямоугольным шпангоутом спереди и круглым сзади. Верхний стрингер состоит из переднего и заднего стрингера. Из заднего стрингера выдвигается выдвижной отрезок стрингера, связанный с прозрачным гибким люком и, задвигаясь в передний стрингер, образуется единый цельный верхний стрингер.

Для осуществления изобретения, плавающего махолета фиг.1, 2, 3, имеется основа, на которой все размещается и крепится, это силовая рама 1 /фиг.4/. Рама 1 имеет щечки 2 с круглыми плоскостями спереди, соединенные трубой 3 с качалками 5 на ней, соединенные планкой 6 жесткости. Сзади щечки 2 соединены уголком 4, на котором имеется спинной упор 7 для подпора сиденья-ложа 20 /фиг.5/. Спереди на щечках 2 внутри имеются сменные, по мере износа, радиальные шлицевые пластины 8 для фиксации каретки 31 корней крыльев 44 /фиг.7/. Снаружи щечек 2 имеются сменные, по мере износа, радиальные направляющие 9 типа "ласточкин хвост" или других подходящих типов с шлицевой поверхностью сверху для фиксации угольника 71 /фиг.7/ привода крыльев 82 /фиг.3/, в середине снизу внутри силовой рамы 1 на щечках 2 приварена пластина 11 для упора простого сиденья 23 ригелем 24 /фиг.5/. Снаружи около середины щечек 2 в нижней части приварены упоры 13 с ушками для шарнира взлетно-посадочного устройства 14 плавающего махолета. Взлетно-посадочное устройство 14 состоит из патрона 15, в котором находится пружина 16 взлета, а при посадке она же заряжающийся амортизатор. На патроне 15 шарнирно расположен рычаг 17 зарядки пружины 16 взлета и рычаг 18 удержания /стопорения/ витков пружин 16 взлета.

Для осуществления маха крыльями пилотом в различных удобных для него положениях и его отдыха в аппарате имеется сиденье-ложе 20 /фиг.5/. Сиденье-ложе 20 имеет пустотелую ось 21, на концах которого имеется резьба для затяжки /крепления/ барашками оси 21 в пазах 12 силовой рамы 1 в нужном месте, исходя от роста пилота, для привода педелей 78 /фиг.7/. На середине оси 21 находится велоседло 22 с мини-спинкой, по краям велоседла 22 имеется простое опускающееся сиденье 23. По краям простого сиденья 23 находятся фиксаторы 24 простого сиденья 23 и спаренные ручки управления фиксаторами 24. Ложе пилота состоит из П-образной трубы 25, шарнирно закрепленной на оси 21 по краям простого сиденья 23. В середине П-образной трубы 25 приварена труба-ось 26, длиной в рост сидящего пилота до верха головы, с припуском. Эта труба 26 является осью бедренной спинно-грудной с упорами пластины 27 и пластины 28 с плечевым упором для поворота туловища и головы в разные стороны для удобства и обзора. На конце трубы 26 в ушках проходит ось для распорного ролика 29 и кольцо подвески 30 плавающего махолета для безопасности учебных тренировок. Ролик 29 служит для прогиба верхнего стрингера 118 фюзеляжа 110 /фиг.8/.

Для изменения направления маха крыльев 82, шарнирного крепления корней 44 крыльев и размещения механизмов аппарата имеется каретка 31 корней крыльев 82 /фиг.6/. Каретка 31 имеет оси 33, на которых шарнирно через подшипники крепятся в центре круглые плоскости щечек 2. На оси 33 шарнирно через подшипники крепятся угольники 71 привода крыльев 82. На каретке 31 размещены оси 36 корней 44 крыльев 82 с корпусом 39 устройства автоматического угла атаки крыльев 82. Дно корпуса 39 имеет шлицевую поверхность 40 для сцепления рычага 60 на нужном угле атаки крыла 82 и с заполнителями 41 шлицевых пазов для проскальзывания ненужного угла атаки крыла 82. К корпусу 39 спереди устройства автоматического угла атаки крыльев 82 приварен кожух 42 пружины 66 рычага 60 угла атаки крыльев. К корпусу 39 снизу при помощи стоек и распорок приварен кожух 43 пружины 81 автомаха крыльев 82 с зарядным устройством. Каретка 31 фиксируется ригельными фиксаторами 37 с помощью ручек 38 управления фиксаторами 37 для нужного направления маха крыльев 82.

Для крепления крыльев 82 к аппарату и их работы имеются корни 44 крыльев /фиг.7/. Устройство узла корня 44 крыла 82 состоит из корневой втулки 45, посаженный шарнирно на ось 36 каретки 31 корня крыла 44. Под прямым углом между корневой втулкой 45 и цапфой 47 имеются косынки, верхняя и нижняя. На верхних косынках находятся ручки управления: крылофюзеляжного пазуха 49, площадью поверхности крыла 50 /натягом/, стреловидностью крыла 51, шарнирами лонжеронов. Внутри между косынками находятся барабаны 52 для тросов. В цапфе 47 шарнирно находится корневой лонжерон 53 за счет роликов между ними. Наружный конец корневого лонжерона 53 имеет шарнир 56 с поперечной планкой 55 с роликами на концах для изменения стреловидности крыла 82 через тросики 86 плечевого лонжерона.

Для автомаха крыла 82 имеется устройство узла автоматического угла атаки 57 /фиг.7/. Внутренний конец корневого лонжерона 53 имеет шарнирное соединение со стержнем 58 рычага угла атаки 60 крыла 82. Стержень 58 шарнирно закреплен в корпусе 60 рычага угла атаки крыла 82. В корпусе 60 рычага имеется ригель 61 сцепления со шлицевой поверхностью 40 дна корпуса 39 устройства угла атаки крыла 82. На ригель 61 сверху в корпусе 60 рычага угла атаки давит пружина 62 для удержания сцепления рычага 60 угла атаки за дно 40 корпуса устройства угла атаки. Сверху к ригелю 61 прикреплены два тросика, один 64 связывает через ролик ушко цапфы 47 сверху, другой 65 - ушко цапфы 47 снизу. К рычагу 60 угла атаки крыла 82 прицеплена пружина 66 для становления крыла на положительный угол атаки. Пружина 66 имеет свой кожух 42, приваренный к корпусу 39 устройства угла атаки крыла 82 и другим концом приварен к трубе жесткости каретки 31.

Для осуществления маха крыльев пилотом и энергией окружающей среды /ветра/ имеются устройства узлов привода крыльев 67 /фиг.7/. На наружном конце цапфы 47 крепится хомут 68, который затянут на шарнирный крестовый болт 69, являющийся осью шатуна 70. Другой конец шатуна 70 соединен с первым концом угольника 71 привода через шарнирную крестовину 72 угольника 71 привода. Угольник 71 привода крыла 82 имеет на двух концах ползуны 73 в радиальных направляющих 9 на щечках 2 силовой рамы 1 и фиксаторы 74 угольника 71 привода, входящие в шлицы поверх радиальных направляющих 9. Первый конец угольника 71 привода корня крыла 44 шарнирно соединен с первой частью штока 75 привода, длиной до второго конца угольника 71 привода корня 44 крыла. На первой части штока 75 привода имеются ручки 79 управления всего штока. К первой части штока 75 шарнирно присоединена вторая часть штока 76. На другом конце второй части штока 76 имеется педаль 78 для ступни пилота и выше педали 78 - упор 77 для взлетной пружины 16. Вторая часть штока 76 регулируется по длине за счет вхождения его звеньев одна в другую, с фиксацией необходимой длины. Вторая часть штока 76 имеет шарнир для сгиба штока в середину, для спаривания педалей 78 привода при автомахе и привода ногами.

Для осуществления полета плавающего махолета аппарат имеет крылья 82 /фиг.1, 2, 3/. Крылья 82 используются и для плавания на водных просторах как паруса. Крыло 82 состоит из плечевого лонжерона 84, шарнирно соединенного через вертикальный шарнир 56 с корневым лонжероном 53 /фиг.7/, корнеплечевой шарнир/. На плечевом лонжероне 84 имеется хомут 85 с ушками по обе стороны лонжерона. К ушкам хомута 85 прикреплены тросики 86 с обеих сторон. Один тросик 86 надет на передний ролик поперечины 55 корневого лонжерона 53 для управления обратной стреловидностью крыла 82. Другой тросик 86 надет на задний ролик поперечины 55 корневого лонжерона 53 для управления прямой стреловидностью крыла 82. Для прямого размаха крыльев длины натяжения обеих тросов 86 одинаковы. Далее по плечевому лонжерону 84 еще имеется хомут 87 с ушком вперед. В ушке находится ось 88 рычага 89 натяга площади крыла 82. Рычаг 89 натяга площади крыла 82 имеет малое плечо, шарнирно соединенное с толкателем 90 натяжителя 101 конца крыла 82. На большом плече рычага 89 натяга площади крыла 82 на расстоянии малого плеча от оси 88 имеется хомут 91 с ушками в сторону фюзеляжа 110, шарнирно соединенный с малым толкателем 92 натяжителя внутреннего конца крыла 93, 82. Конец рычага 89 большого плеча тросиком 96 связан с управлением 50 натяжения площади крыла 82. Конец плечевого лонжерона 84 имеет крестовый шарнир 95, который связан с локтевым лонжероном 94 /плечелоктевой шарнир/. К крестовому шарниру 95 прикрепляется поперечно-крыльевой шарнир 97 с замками с двух сторон шарнира 97, закрепляющий пленочное полотно крыла 82. Этот поперечный шарнир 97 крыла располагается поперек всей площади крыла 82 и соединяется с шарниром 98 толкателя /крестовой/ натяжителя 101 конца крыла 82 для образования полумаха крылом. Это необходимо для того, чтоб не передавался вес крыла 82 фюзеляжу 110 при взмахе крылом вверх и для сохранения энергии, так как полкрыла взлетает само от набегающего потока воздуха. Другой конец поперечного шарнира 97 крепится к передней кромке крыла 82. Крестовые шарниры 95 на лонжероне 98 и на толкателе 90 управляются шарнирными упорами 99. На натяжителя 101 конца крыла 82 около середины имеется хомут 100 с ушками в сторону фюзеляжа 110 для шарнирного соединения с толкателем 90 натяжителя 101 конца крыла 82. Натяжитель 101 шарнирно соединен с локтевым лонжероном 94. Крылофюзеляжный пазух состоит из двух натяжителей поверхности пазуха крыла 82, исходящих из корнеплечевого шарнира 56 с подпружиниванием контурного натяжителя 104 для прижима к фюзеляжу, а другой натяжитель 105 прямой, с ушком около середины для шарнирного соединения толкателя 106, находящегося между натяжителями 104, 105. На контурном натяжителе 104 имеется ступенчатый упор для толкателя 106. Толкатель 16 соединен тросиком 107, который идет на барабан 49, 52 регулировки натяжения поверхности пазуха. Пленочное полотно, образующее поверхность пазуха, свисает с пазуха и является клапаном в зазорах между крылом 82 и пазухом 103 крыла, пазухом 103 и фюзеляжем 110. К передней кромке крыла 82 крепится крылышко 108 для предотвращения срыва потока воздуха с крыла 82 и увеличения скорости воздуха над крылом 82. В конце пленочного полотна крыла 82 имеются аэродинамические щели 109 для создания реактивных струй после крыла 82, это придает большую эффективность в скорости и подъемной силе аппарата.

Для удобства и комфорта, и сохранения механизмов от внешней среды: пыли, грязи, дождя, снега, мороза, жары, и увеличения скорости полета плавающий махолет имеет фюзеляж 110 с изменяющимся миделевым сечением и складывающимся емкостным шасси 121. Емкостное шасси 121 позволяет пилоту осуществить взлет, полет, посадку и плавание стоя. Фюзеляж крепится к отходящим концам трубы 3 и угольника 4 силовой рамы 1, на которые приварены пластины с отверстиями, и имеющиеся отверстия на шпангоутах 114 фюзеляжа 110 позволяют соединять болтами. Фюзеляж 110 /фиг.8/ состоит из носового наконечника 111, обруча-шпангоута переднего 112 и заднего 113, четырех контурных шпангоутов 114 из пластин и двух шпангоутов с пазами 115 для корневых лонжеронов 53. Роль верхнего смотрового окна выполняет прозрачный гибкий люк 116, обрамленный швейным замком типа "молния". С обеих сторон фюзеляж связывают по четыре стрингера 117. Верхний стрингер 118 при положении пилота стоя или сидя находится в выпуклом наружу состоянии за счет распорного ролика, находящегося на оси 26 сиденья-ложа 20, а при лежачем положении пилота верхний стрингер 118 выпрямляется за счет проскальзывания в ушке заднего шпангоута 113 и фюзеляж имеет меньший диаметр, то есть уменьшается миделево сечение. К заднему шпангоуту 113 за счет узеньких пластин, выполняющих роль спиц 119, в центре приварена небольшая трубочка, служащая втулкой 120 для валика 129 хвостового оперения 128 /фиг.1, 3/. К переднему 112 и заднему 113 шпангоутам снизу шарнирно по бокам закреплены по две трубы, называемые слегами 122, 123. Снизу слег шарнирно закреплена упорно-взлетная площадка 125, имеющая по углам четыре колеса, которые на осях мини-стоек с пружинами отщелкиваются для становления на колеса или складывания их 126, 127. Задние слеги 123 имеют шарниры 124 на расстоянии длины складывания под сиденье-ложе 20. Шарниры слег 122, 123 на шпангоутах 112, 113 имеют пружины для самоскладывания при отсутствии на них посторонних усилий. Весь каркас фюзеляжа 110 с емкостным шасси 121 герметично обтягивается легким, прочным, воздухонепроницаемым пленочным полотном.

Для управления курсом и высотой полета плавающего махолета, управления маневрами и торможения имеется хвостовое оперение 128 /фиг.1, 3/. Хвостовое оперение 128 состоит из пустотелого валика 129, находящегося во втулке 120, которая приварена в центре шпангоута 113. К валику 129 приварена вертикальная стойка-рычаг 130 с внутренней стороны фюзеляжа, для поворота хвостового оперения 128 на одну четверть оборота, чтоб управлять площадью хвостового оперения как в горизонтальном положении вверх-вниз, так и в вертикальном положении влево-вправо. Стойка-рычаг 130 тросиком 131 через ролики связана с ручкой управления 132. С наружной стороны к валику 129 приварена вертикальная стойка 133 в середине, с роликами на концах. К стойке 133 приварена поперечная втулка 134 для шарнирного пакета 135 хвостового оперения 128. В пакете 135 хвостового оперения находятся оси 138 перьев, на которых шарнирно крепятся перья для увеличения и уменьшения площади 141 хвостового оперения, связанные между собой тросиком 139, подведенным к ручке управления 140.

Пилот совершает взлет и посадку с грунтовой и водной поверхности и имеет режимы полета и плавания с маневрированиями стоя, сидя, лежа, это: машущий, автомашущий, скоростной и плавания. Для осуществления свободного полета и плавания на плавающем махолете "Лебедушка" необходимо приготовить аппарат к работе. Надо раскрыть сверху на фюзеляже 110 /фиг.8/ швейный замок "молния" прозрачного гибкого люка 116, выдвинуть из передней части верхнего стрингера 118 отрезок стрингера и задвинуть в заднюю часть стрингера 118. Опуститься внутрь фюзеляжа 110, встав ногами перед сиденьем-ложем 20, и присесть. Выдвинуть из задней части верхнего спрингера 118 отрезок люкового стрингера и задвинуть в переднюю часть стрингера 118, где он защелкивается и этим самым верхний стрингер 118 станет единым целым. Поставить спинку /ложе/ сиденья-ложа 20 в вертикальное положение. Распорный ролик 29 над подголовником 28 прогнет верхний стрингер 118 вверх, этим самым увеличится миделево сечение фюзеляжа 110 сверху. Повернуться лицом вперед и отцепить рычаги 75, 76 привода крыльев 82 от качалки 5 с планкой 6 жесткости. Освободить слеги 122, 123 шасси 121 и взлетное устройство 14. Свои плечи подладить под плечевые упоры 28 сиденья-ложа 20 и встать во весь ост на взлетную упорную площадку 125. Простое сиденье 23 будет свисать, велоседло 22 будет между ног. Емкостное шасси 121 примет свой рабочий вид и этим самым увеличится еще миделево сечение снизу. Будут свисать рычаги 75, 76 привода крыльев 82 и взлетное устройство 14. Ручкой 51 управления стреловидностью крыльев 82 расправить крылья с фюзеляжа 110 на прямой размах 11, ручкой 50 управления площадью поверхности /полотном/ крыла 82 делается слабый натяг крыла. Проверив, гибкий люк открыть и перед взлетом при необходимости закрыть. Снять с себя сиденье-ложе, аппарат сложится и выйти из фюзеляжа, закрепить поперечно-крыльевые шарниры 97 с замками полотна плоскостей крыльев 82 и полотно крыльев пустотелыми клиньями. Войти в фюзеляж 110 и окончательно натянуть плоскости /полотно/ крыльев барабанами 52, управляемые ручкой 50, и установить толкатель 106 на контурном натяжителе 104, натянуть пазух 103 крыла 82. Войти в фюзеляж 110 и окончательно натянуть плоскости /пленочные полотна/ крыльев 82 барабанами 52, управляемыми ручкой 50, и зафиксировать собачками барабанов 52. Натянуть плоскости /полотна/ пазухов 103 крыльев 82 барабанами 52, управляемыми ручкой 49, и зафиксировать собачками барабанов 52. Ручками управления 132, 137, 140 хвостовым оперением 128 привести хвостовое оперение 128 в надлежащий вид для взлета аппарата. Закрепить каретку 31 корней 44 крыльев приподнятым задним концом для направления взмахов крыльями 82 вверх вперед и вниз назад фиксаторами 37, управляемыми ручкой 38. Можно крыльям 82 придать немного обратную стреловидность Ж для более эффективного взлета, ручками управления 51 стреловидностью крыльев. Надеть на ступни педали 78 рычагов 76 привода крыльев. Упереть в упоры 77 рычагов заряженные /сжатые/ пружины 16 взлета. Расположиться в положении присеста и свои плечи ввести под плечевые упоры 28. Закрепить тросики 19 /шнуры/ связи рычагов 76 привода с рычагами 17, 18 взвода и удержания пружин 16 взлета. Крылья подняты вверх. Пилот при отталкивании от твердой поверхности ногами через упорную взлетную площадку 125 емкостного шасси 121 тросиком 19 освобождает пружины 16 взлета, которые, срабатывая, дают большое ускорение массе пилота и аппарата вверх на большую высоту и сильный взмах крыльями 82, не задевая твердой поверхности и соответственно не ломая крылья 82 о них. Пока продолжается ускорение вверх пилот, работая ногами, сгибая и разгибая, делает взмахи крыльями, увеличивая ускорение вверх и подъем аппарата. При удовлетворении высотой полета пилот переходит в горизонтальный полет.

Пилот может осуществить горизонтальный полет и маневры стоя, сидя, полулежа, лежа и различными размахами крыльев: прямым, прямой стреловидностью, обратной стреловидностью, и с различными направлениями взмахов: вверх-вперед, вниз-назад; вверх-вертикально, вниз-вертикально; вверх-назад, вниз-вперед - соответственно настроив аппарат. Летать стоя не эффективно, и поэтому лучше сидя. Для этого пилот заносит ноги с педалями 77 и рычагами 76 привода крыльев 82 в носовую часть фюзеляжа 110, скрепляет педали 77 с качалками 5. Скрепляет рычаги 76 привода крыльев планкой жесткости 6 между собой, фиксирует простое сиденье 23 в горизонтальном положении фиксатором 24, укладывает под сиденье 20 взлетное устройство 14. Емкостное шасси 121 под действием пружин складывается под сиденьем 20, образуя дно фюзеляжа 110, и соответственно миделево сечение фюзеляжа 110 уменьшится снизу.

Для простого полета применим прямой П размах крыльев и вертикальные взмахи, то есть вверх вертикально и вниз вертикально. Для этого закрепить каретку 31 корней крыльев 44 фиксаторами 37, 38 в горизонтальном положении и ручками 51 управления сделать прямой размах крыльев 82.

Для скоростного полета пилоту необходимо лечь. Пилот освобождает спинку сиденья-ложа 20 от спинного упора 7 и раскладывает горизонтально, ложится, принимает горизонтальное положение на сиденье-ложе 20. Раскрепив ось 21 сиденья-ложа в силовой раме 1 и подогнав сиденье-ложе и себя к педалям 78 привода крыльев 82, пилот фиксирует сиденье-ложе 20 в силовой раме. Распорный ролик 29 освобождает верхний стрингер 118 фюзеляжа 110. Стрингер 118, выпрямляясь, уменьшает миделево сечение фюзеляжа сверху. В положении пилота лежа и интенсивной работы ногами при наименьшем миделевом сечении фюзеляжа 110 получается скоростной полет.

При встречном ветре пилот для отдыха и экономии энергии переходит на автомашущий режим полета, это можно стоя, лежа. Для осуществления такого полета пилот сцепляет пружину 81 автомаха с педалями 78 привода крыльев на качалке 5 и ставит крылья 82 на положительный угол атаки рычагом 60 угла атаки, заряжая пружину 66 /растягивая/ угла атаки, фиксируя рычаг 60 ригелем 61 рычага 60 угла атаки крыльев 82. Крылья 82, имея положительный угол атаки от набегающего потока воздуха, поднимаются вверх, заряжая /сжимая/ пружину 81 маха. При достижении крыльями верхнего предела тросик 65 вынимает ригель 61 рычага 60 из шлицевого зацепления 40 корпуса 39 устройства угла атаки крыльев 82. Свободные крылья 82 флюгируют растягивая /заряжая/ пружину 66 угла атаки крыла и перемещая рычаг 60 до пустого паза меж шлицами, соответствующего нулевому углу атаки крыла. Ригель 61 рычага 60, войдя в паз меж шлицами, фиксирует рычаг 60 и соответственно крылья 82 на нулевом угле атаки. На крылья с нулевым углом атаки сразу действует /разжимается/ пружина 81 маха, то есть происходит мах крыльями 82 вниз. При достижении крыльями 82 нижнего предела тросик 64 выдергивает ригель 61 рычага 60 угла атаки из шлицевого паза 40 и на освободившийся рычаг 60 действует /сжимается/ пружина 66. Пружина 66 доводит рычаг 60 до пустого паза меж шлицев, где ригель 61 под действием своей пружины 62 входит в паз, и фиксирует рычаг 60 на положительном угле атаки крыла 82. Крылья 82, имея положительный угол атаки, поднимаются вверх от набегающего потока воздуха /ветра/. Это значит, что циклы маха крыльев повторяются автоматически без вмешательства пилота, пока есть ветер, но пилот может помогать циклам маха для ускорения скорости полета.

Для отдыха и наслаждения полетом пилот переводит плавающий махолет "Лебедушка" на планирующий режим. Пилот фиксирует угольники 71 привода крыльев 82 фиксаторами 74. Так фиксируются крылья 82 махолета и аппарат превращается в планер. Управление полетом осуществляется крыльями 82 и хвостовым оперением 128.

Летом есть возможность осуществлять подъем на высоты пассивно за счет тепловых потоков воздуха вверх стоя, сидя, лежа.

Для посадки аппарата на Землю пилоту нужно принять сидячее положение и упереть спинной упор 7 о сиденье-ложе 20, освободить слеги 122, 123 емкостного шасси 121 из-под сиденья-ложи 20, освободить взлетное устройство 14, отцепить от качалок 5 и планки 6 жесткости педали 78 привода крыльев 82, раскрепить рычаги 76 привода крыльев от одного конца рычага угольника 71, перенести ноги с педалями 78 в емкостное шасси 121 и встать во весь рост на упорную взлетную площадку 125. Для гашения скорости полета и снижения аппарата пилот настраивает махи крыльев 82 вверх-назад и вниз-вперед. Пилот производит махи крыльями 82 и перед касанием аппарата о твердую поверхность не заряженные взлетные пружины 16 упирает в упоры 77 рычагов 76 привода крыльев 82. При касании аппарата о твердую поверхность масса аппарата и пилота надавит на пружины взлета 16 и сожмет их, т.е. зарядит, самортизирует посадку, и собачки зацепятся за сжатые витки пружины и будут удерживать их. Если зарядка взлетных пружин неполная, нужно дозарядить вручную.

Посадка аппарата на водную поверхность осуществляется так же, но зарядка взлетных пружин 16 происходит медленно из-за амортизации воды и дозаряжать вручную приходится дольше.

Для плавания аппарата под крыльями /парусом/ пилоту нужно, исходя из опыта плавания на данном аппарате, закрепить каретку 31 корня 44 крыла в горизонтальном положении, укрепить плечелоктевой шарнир 95 лонжерона и шарнир 98 толкателя шарнирными упорами 99. Крылья 82 поднять на определенную высоту, исходя из опыта во избежании опрокидывающего момента и управляемости аппарата, закрепить угольник 71 привода крыльев 82 и рычаг 60 угла атаки крыльев. Пилот может плавать по своему желанию стоя, сидя, лежа, управляя парусностью крыльев или одного крыла.

Плавание осуществляется стоя за счет мускульных усилий, сокращения мышц ног коленного сустава. Движителем является емкостное шасси 121 при приседании пилота и вставании в полный рост. Сзади получается отталкивание водной массы емкостного шасси 121 за счет складывания двух задних слег 123 и их выпрямление.

Взлет с воды /жидкой поверхности/ осуществляется при помощи заряженных взлетных пружин 16, если пружины 16 не заряжены, то их заряжают вручную, и многоразовых толчков емкостным шасси 121 о воду, создавая колебания водной среды, то есть выталкивающую силу, и в момент подъема аппарата из водной среды пилот перед моментом отталкивания о упорную взлетную площадку 125 упирает взлетную пружину 16 в упор 77, сцепляя тросик 19 с упором 77, и при отталкивании тросик 19 освобождает взлетные пружины 16. Срабатывают в резонанс выталкивающая сила воды, сила пилота и работа взлетных пружин 16. От действий этих сил масса аппарата с пилотом с большим ускорением взлетают на большую высоту, не задевая водной поверхности крыльями 82. Дальнейшие взмахи крыльями пилотом ускоряют подъем аппарата до желаемой высоты, где пилот переходит на горизонтальный полет.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Мускульный плавающий махолет, содержащий фюзеляж, крылья, шасси, привод крыльев, пружины, отличающийся тем, что он имеет силовую раму с шарнирно соединенным взлетно-посадочным устройством, сиденье-ложе, каретку корней крыльев, корни крыльев, устройство автоматической установки угла атаки крыльев, хвостовое оперение, при этом взлетно-посадочное устройство состоит из патронов, в которых находятся пружины взлета, которые при взлете и при посадке уперты в упоры на штоке привода и при посадке используемые как заряжающий амортизатор, причем на патронах шарнирно закреплены рычаги зарядки и рычаги удержания пружин взлета, освобождающие при взлете пружины взлета для взмаха крыльями и отталкивания махолета от поверхности, причем крылья выполнены с возможностью их фиксирования как парусов для плаваний.

2. Мускульный плавающий махолет по п.1, отличающийся тем, что силовая рама состоит из двух щечек, установленных плоскостями вертикально, а также скрепленных трубой спереди и уголком сзади, причем концы трубы и уголка имеют пластины для крепления фюзеляжа, при этом на трубе шарнирно закреплены качалки с планкой жесткости для привода крыльев, а на уголке имеется шарнирный упор для сиденья-ложа, щечки имеют впереди посадочные отверстия для подшипников качения каретки корней крыльев, внутри рамы вокруг посадочного отверстия щечки имеют сменные шлицевые пластины для фиксации каретки корней крыльев и направления взмахов крыльями, щечки имеют полочки для фиксации простого сиденья, и имеют пазы для передвижного крепления сиденья-ложа, щечки снаружи имеют вокруг посадочного отверстия подшипников качения каретки корней крыльев сменные направляющие для ползуна угольника привода крыла и сверху на направляющих шлицы для фиксации угольника привода крыла.

3. Мускульный плавающий махолет по п.1, отличающийся тем, что взлетно-посадочное устройство крепится шарнирно к ушкам упора силовой рамы аппарата ушками патрона, который в верхней части свободно проворачивается для укладки взлетно-посадочного устройства под сиденье-ложе, в нижней части патрон имеет ушки с отверстиями для шарнирного крепления рычага зарядки пружины взлета, находящейся в патроне, и рычага удержания пружины, рычаг зарядки пружины на конце имеет собачку для захвата витка пружины, для освобождения витков пружины при взлете рычаги имеют связь тросиком со штоком второго колена, имеющего упор для пружины взлета.

4. Мускульный плавающий махолет по п.1, отличающийся тем, что к силовой раме для регулировки исходя из роста пилота подвижно крепится сиденье-ложе, имеющее простое сиденье, шарнирно закрепленное на оси для опускания его передней части вниз, при этом для восстановления простого сиденья и его крепления имеется управляемый ригель, который упирается на полочки щечек, в середине простого сиденья имеется велоседло со спинкой, шарнирно закрепленное на оси сиденья-ложе, по краям простого сидения на оси шарнирно закреплена П-образная труба для упора спины пилота, к середине П-образной трубы приварена труба-ось, на которой шарнирно закреплены: пластина спинногрудного пояса с концевыми упорами туловища пилота с левой и правой стороны; пластина с плечевыми упорами и подголовником, на конце трубы-оси в ушках имеется ось для распорного ролика с роликом для прогиба верхнего стрингера фюзеляжа и кольцо подвески плавающего махолета для безопасности учебных тренировок.

5. Мускульный плавающий махолет по п.1, отличающийся тем, что каретка корней крыльев состоит из П-образной вертикальной трубы, концы которой разведены в разные стороны по одной прямой и проходят через щечки силовой рамы и являются осью каретки и угольников привода крыльев, каретка корней крыльев установлена шарнирно относительно силовой рамы, к основанию П-образной трубы с обеих сторон приварена П-образная большая труба, выгнутая вверх до уровня П-образной трубы, для прочности каретки приварены распорки по обеим сторонам, связывающие середину большой П-образной трубы с верхом П-образной трубы, вверху П-образной трубы на середине имеется хомут, к нему на расстоянии по разные стороны от середины приварены оси корней крыльев, другими концами закрепленные в круглых вырезах передней стенки корпуса устройства для автоматической установки угла атаки крыльев, по краям П-образной трубы и к большой П-образной трубе возле распорок приварены устройства фиксаторов положения каретки с ригелями сцепления с шлицами пластинок силовой рамы, к середине большой П-образной трубы приварен задней стенкой корпус устройства для автоматической установки угла атаки крыльев с кожухом для пружины угла атаки и кожухом для пружины маха крыла, дно корпуса устройства для установки угла атаки крыла имеет шлицевую поверхность для сцепления ригеля рычага угла атаки крыльев.

6. Мускульный плавающий махолет по п.1, отличающийся тем, что имеет устройство узла корня крыла, состоящее из корневой втулки, посаженное шарнирно на оси каретки корня крыла, к ней приварены одним концом одна косынка сверху и другая - снизу под прямым углом между втулкой и цапфой, другим косынки приварены к цапфе, внутри между косынками находятся барабаны для тросов управления, на верхней косынке находятся ручки управления ими: площадью поверхности крыла, стреловидностью крыла, шарнирами лонжеронов, в цапфе шарнирно находится корневой лонжерон за счет роликов между корневым лонжероном и цапфой, наружный конец корневого лонжерона имеет шарнир с поперечной планкой и роликами на концах планки, через которые пропущен тросик, связанный с плечевым лонжероном для изменения стреловидности крыла.

7. Мускульный плавающий махолет по п.1, отличающийся тем, что имеет устройство для автоматической установки угла атаки крыла, состоящее из корпуса рычага угла атаки крыла, на котором имеются шарнирно посаженные два стержня, по одному на каждое крыло, шарнирно связанные с внутренними концами лонжеронов, рычага угла атаки, находящегося в корпусе, в котором имеется ригель сцепления со шлицевой поверхностью дна корпуса устройства для автоматической установки угла атаки крыльев, на ригель сверху в корпусе рычага угла атаки давит пружина для удержания сцепления рычага угла атаки за дно корпуса устройства для автоматической установки угла атаки, сверху к ригелю прикреплены два тросика, один связывает через ролик ушко цапфы сверху, другой - ушко цапфы снизу, с рычагом угла атаки крыла сцеплена пружина для становления крыльев на положительный угол атаки, пружина имеет свой кожух, приваренный к корпусу устройства для автоматической установки угла атаки и к трубе жесткости каретки корней крыльев.

8. Мускульный плавающий махолет по п.1, отличающийся тем, что имеет привод крыльев, состоящий из шатуна, одним концом соединенного с шарнирным болтом, которым затянут хомут на наружном конце цапфы и являющимся осью шатуна, другим концом шатун соединен с первым концом угольника привода через шарнирную крестовину угольника привода крыла, который имеет на двух концах ползуны в направляющих на щечках силовой рамы и фиксатор угольника привода, входящий в шлицы поверх направляющих, первый конец угольника привода корня крыла шарнирно соединен с первой частью штока привода, длиной до второго конца угольника привода корня крыла, на первой части штока привода имеются ручки управления всего штока, к первой части штока шарнирно присоединена вторая часть штока, на другом конце второй части штока имеется педаль для ступни пилота, выше педали имеется упор для взлетной пружины, вторая часть штока регулируется по длине за счет вхождения его звеньев одно в другое с фиксацией необходимой длины, а также имеет шарнир для сгиба штока в середину, для спаривания педалей привода при махе крыла и привода ногами.

9. Мускульный плавающий махолет по п.1, отличающийся тем, что имеет крыло, состоящее из плечевого лонжерона, шарнирно соединенного вертикальным шарниром с корневым лонжероном, на плечевом лонжероне имеется хомут с ушками по обе стороны лонжерона, к ушкам хомута прикреплены тросики с обеих сторон, один тросик идет на передний ролик поперечины корневого лонжерона, для управления обратной стреловидностью крыла, другой тросик идет на задний ролик поперечины корневого лонжерона, для управления прямым размахом и стреловидностью крыла, на плечевом лонжероне имеется хомут с ушком вперед, в ушке находится ось рычага натяга площади крыла, рычаг натяга площади крыла имеет малое плечо, шарнирно соединенное с толкателем натяжителя конца крыла, на большом плече рычага натяга площади крыла на расстоянии малого плеча от оси находится хомут с ушком в сторону фюзеляжа, шарнирно соединенный с малым толкателем натяжителя внутреннего конца крыла, конец рычага большого плеча тросиком связан с управлением натяжителя площади крыла, конец плечевого лонжерона имеет крестовый шарнир, который связан с локтевым лонжероном, к крестовому шарниру прикрепляется поперечно-крыльевой шарнир с замком с двух сторон шарнира, закрепляющий пленочное полотно крыла, другой конец поперечного шарнира крепится за переднюю кромку крыла, крестовые шарниры на лонжероне и на толкателе управляются шарнирными упорами, на натяжителе наружного конца крыла около середины имеется хомут с ушками в сторону фюзеляжа для шарнирного соединения с толкателем натяжителя наружного конца крыла, натяжитель шарнирно соединен с локтевым лонжероном, снаружи в конце пленочного полотна крыла имеются аэродинамические щели для создания реактивных струй воздуха после крыла, к передней кромке крыла крепится крылышко, для предотвращения срыва потока воздуха с крыла и увеличения скорости воздуха над крылом.

10. Мускульный плавающий махолет по п.1, отличающийся тем, что имеет фюзеляж, состоящий из носового наконечника, переднего и заднего обруча-шпангоута, четырех контурных шпангоутов из пластин и двух шпангоутов с пазами для корневых лонжеронов, с обеих сторон фюзеляж связывают по четыре стрингера, верхний стрингер может находиться в выпуклом наружу состоянии за счет распорного ролика, находящегося на оси сиденья-ложе в вертикальном положении, а при горизонтальном положении сиденья-ложе верхний стрингер выпрямляется за счет проскальзывания в ушке заднего шпангоута для уменьшения миделева сечения фюзеляжа, к заднему шпангоуту в центре за счет спиц приварена втулка для валика хвостового оперения, к переднему и заднему шпангоутам снизу шарнирно по бокам закреплены по две трубы-слеги для шасси, сверху фюзеляжа имеется гибкий люк - смотровое окно, фюзеляж крепится к отходящим концам трубы и уголка силовой рамы.

11. Мускульный плавающий махолет по п.1, отличающийся тем, что имеет шасси, состоящее из четырех слег, шарнирно закрепленных по бокам снизу к переднему и заднему шпангоутам фюзеляжа, в нижней части слег шарнирно закреплена упорно-взлетная площадка, имеющая снаружи по углам четыре колеса на стойках с пружинами для становления на колеса или складывания их, задние слеги имеют шарниры на расстоянии длины складывания их под сиденье-ложе, шарниры слег на шпангоутах имеют пружины для самоскладывания при отсутствии на них посторонних усилий, весь каркас фюзеляжа с емкостным шасси герметично обтягивается легким, прочным воздуховодонепроницаемым пленочным полотном.

12. Мускульный плавающий махолет по п.1, отличающийся тем, что имеет хвостовое оперение, состоящее из пустотелого валика, находящегося шарнирно во втулке шпангоута, к валику приварена вертикальная стойка-рычаг с внутренней стороны фюзеляжа для поворота хвостового оперения на одну четверть оборота для установления площади хвостового оперения в горизонтальное положение или вертикальное, за счет тросика, связанного со стойкой-рычагом и ручкой управления, с наружной стороны к валику приварена вертикальная стойка с роликами на концах, для шарнирного крепления пакета хвостового оперения, причем в пакете хвостового оперения находятся оси перьев, на которых шарнирно крепятся перья, связанные между собой тросиком, пропущенным через ролики вертикальной стойки и подведенным к ручке управления для управления площадью хвостового оперения вверх-вниз или влево-вправо.

Почему люди не летают как птицы? Еще как летают: аэродинамика у самолета почти та же, что и у пернатых, хотя над полностью« морфируемым», изменяемым крылом люди еще работают. В полете мы достигли больших высот. Если пересчитать на килограммы массы и километры полета, современный авиалайнер тратит энергии меньше, чем птица. Аналога вертолетного принципа полета в животном мире, видимо, нет вовсе. Но все равно в способностях человека летать остается какая-то неполнота.

Древняя, как весь наш род, мечта летать как птица — то есть свободно махая крыльями — остается невоплощенной. Мечта эта так сильна, что хотя до сих пор ни одна авиакомпания и ни одна армия мира не эксплуатирует ни единого орнитоптера, действующая Конвенция о международной гражданской авиации включает его определение: «Воздушное судно тяжелее воздуха, которое поддерживается в полете в основном за счет реакций воздуха с его плоскостями, которым придается маховое движение».

От самолета до вертолета

Впрочем, у мечты о маховом полете есть и практическая сторона. Аэродинамическое качество — отношение подъемной силы к лобовому сопротивлению, которое определяет эффективность полета — у самолетов исключительно высоко. Но самолеты требуют дорогих и сложных аэродромов, больших взлетно-посадочных полос. Вертолеты в этом смысле удобнее, они взлетают и садятся вертикально, не требуя для этого какой-либо инфраструктуры. Они намного маневреннее и даже способны зависать неподвижно. Но аэродинамическое качество вертолетов невысоко, и час их полетного времени стоит совсем недешево.


Попыток скрестить одно с другим делается немало — у винтокрылых автожиров и конвертопланов есть свои поклонники. Для решения некоторых узких задач эти летательные аппараты могут быть даже незаменимы. Но все-таки такие гибриды оказываются не слишком удачными: известна шутка о том, что они соединили не столько достоинства, сколько ключевые недостатки и самолетов, и вертолетов. Но вот махолеты могут оказаться подходящим решением. Теоретически, они сумеют взлетать с места, будут маневренны вплоть до способности зависать в воздухе и смогут демонстрировать почти самолетное аэродинамическое качество.

Но первые неловкие воздухоплаватели задумывались, конечно, не о самолетах, которых еще вовсе не было, а о птицах. Казалось, что достаточно научиться отталкиваться от воздуха крыльями — и человек полетит. С такими взглядами, конечно, никто из них так и не смог оторваться от земли. Крылатые механические приспособления в лучшем случае позволяли неловко планировать, как это проделал легендарный монах-бенедиктинец Эйлмер, который около тысячи лет назад сиганул с башни Малмсберийского аббатства в Англии, получив тяжелые травмы.


От птицы до насекомого

Причина многочисленных неудач понятна: саму сущность полета в те годы представляли достаточно смутно. Подъемную силу птицам дает не опора на воздух, а особый контур профиля крыла. Разделяя набегающий поток надвое, он заставляет воздух над верхней кромкой двигаться быстрее, чем над нижней. По закону Бернулли, давление будет выше в области с более медленным потоком. Возникающая разница между давлением под крылом и над ним создает подъемную силу. Но стоит начать махать крыльями — и эта ясная картина полностью меняется.

Известная поговорка гласит, что «по законам аэродинамики шмели вообще не могут летать». В принципе, это справедливо: с точки зрения классической аэродинамики насекомые и их крылья — это нечто несусветное. Даже в теории они неспособны создать подъемную силу и тягу, необходимые для полета, — если только мы не перейдем от классической аэродинамики планера к новой, нестационарной. Здесь все иначе: турбулентные завихрения, с которыми конструкторы самолетов борются не покладая рук, становятся ключом к полету и шмеля, и его родственников.


Крупные птицы используют взмахи лишь изредка — например, когда необходимо затормозиться для посадки или взлететь. Эти взмахи плюс движения ног позволяют им получить направленную вперед тягу, для того чтобы в действие вступила подъемная сила крыла. Насекомые же машут крыльями постоянно, причем по особой траектории, скорее вперед-назад, чем вверх-вниз. В сочетании с гибкостью крыльев и достаточной частотой взмахов это создает у их передней кромки турбулентные завихрения, которые «сбрасываются» с края крыла в верхней и нижней точках. Они и создают достаточную для полета шмеля подъемную силу и тягу.

Меняя скорость первой и второй фаз движения, насекомое контролирует направление этих сил, маневрируя в воздухе. И даже щетинки, бугры и неровности на поверхности крыла — отличие от обтекаемого крыла самолета — работают на образование турбулентных вихрей.

От Москвы до Торонто

Этих тонкостей не знали долго и до конца не понимают до сих пор. Но оказалось, что в простейшем случае это и необязательно. Еще до Второй мировой войны немецкие авиаконструкторы с успехом запускали небольшие легкие орнитоптеры, использующие для привода скрученный резиновый жгут. Увлечению ими отдал дань даже знаменитый аэродинамик Александр Липпиш, а в 1930-х Эрику фон Хольсту удалось оторвать от земли орнитоптер, на который был установлен двигатель внутреннего сгорания. Однако создать аппарат, который можно было бы рассматривать как прототип чего-нибудь полезного, способного нести хотя бы одного человека или груз, тогда так и не удалось. В 1960-х Персифаль Спенсер продемонстрировал полет «орниплана» с размахом крыльев 2,3 м и крошечным (объемом 5,7 см3) двухтактным двигателем — пилотировался он оператором, по кабелю.


Более крупный махолет взлетел лишь в начале 1980-х, когда профессор Московского авиационного института Валентин Киселев сконструировал семикилограммовый аппарат, способный самостоятельно стартовать и оставаться в полете. Со временем модель освободилась от кабеля и управлялась по радиосвязи. По следам Киселева в этой работе двигался его заокеанский коллега Джеймс Делориер. В 1991 году Делориер получил диплом Международной федерации аэронавтики за создание «первого оснащенного двигателем и дистанционно управляемого орнитоптера». В 2006 году его модель UTIAS Ornithopter No. 1 взлетела, а вскоре поднялся в воздух и пилотируемый махолет Snowbird — за 14 секунд он пролетел около 300 м на мускульной тяге пилота.

«Это не совсем честный результат, — поясняет ученик профессора Киселева, выпускник МАИ Андрей Мельник. — Я знаком с этими конструкциями, и их нельзя считать махолетами в полном понимании этого слова. Первый аппарат оснащался реактивным двигателем для создания тяги и взлета. А второй продемонстрировал еще одну важную вещь: что мускульной силы человека для машущего полета недостаточно. Даже подготовленному пилоту, спортсмену, и то удалось пролететь совсем немного».


Возвратно-поступательное движение поршней двигателя трансмиссия преобразует во вращательное движение зубчатых колес, а кривошипно-шатунная передача превращает его снова в возвратно-поступательные взмахи крыльев. Изобретатели мечтают о том, чтобы сделать эту схему эффективнее, напрямую передавая движения поршней крыльям.

От игры до науки

Надо сказать, что если «полезный» машущий полет не удается освоить до сих пор, то игровая индустрия чувствует себя в этой области уже вполне уверенно. Первые небольшие модели на резинке появились в продаже еще в конце XIX века, а сегодня одну из популярных игрушек с машущими крыльями, электромотором и на радиоуправлении предлагает компания-разработчик игрушечных роботов WowWee.

«Я сам начинал с авиамоделирования, — говорит Андрей Мельник, — поэтому представляю, насколько требовательны самолеты к мастерству пилота, управляющего ими с земли. Буквально одно неловкое движение — и он заваливается в штопор или в крен. И я могу сказать, что мой опыт управления нашим махолетом показывает, что с этим аппаратом справится даже ребенок. Он получился у нас настолько устойчивым, что легко прощает все ошибки и остается в воздухе».


Средства в разработку нового типа летательных аппаратов при довольно сомнительных перспективах вкладывают неохотно. Однако Андрею Мельнику и Дмитрию Шувалову удалось убедить инвесторов, что благодаря современным технологиям и при должных вложениях махолет можно создать. «Нам удалось нащупать несколько принципиальных моментов, которые прежде, в том числе и когда я работал с профессором Киселевым, понимались неверно, — добавляет конструктор. — Первые наши модели просто разваливались, не выдерживая нагрузки. Так вот, предполагалось, что такую нагрузку на аппарат создают аэродинамические силы. Однако испытания показали, что это не так, и основное воздействие он испытывает из-за инерции машущих крыльев».

Выяснив причины неудач, разработчики максимально снизили вес крыла — до 600 г при площади 0,5 м 2 — и демпфировали его воздействие на фюзеляж. «Настоящим сюрпризом для нас стали результаты моделирования, которые показали, что аэродинамический центр четырехкрылого аппарата находится не где-то между передней и задней парой крыльев, а позади них, — вспоминает Андрей Мельник. — Чтобы решить эту проблему, пришлось изменить геометрию переднего и заднего оперений. Но в результате махолет стал уверенно держаться в воздухе».


Крошечные орнитоптеры разрабатываются в разных странах мира. Как правило, авторы их пытаются с большей или меньшей точностью сымитировать природу, повторив конструкцию летающего насекомого. В мае 2015 года Питер Эббил и Роберт Дадли из лаборатории биомиметических миллисистем Университета Беркли продемонстрировали весьма эффектный взлет 13,2-граммового махолета с «пусковой установки» на спине шестиногого микроробота.

От практики до теории

Первый полет махолета состоялся в 2012 году, когда аппарат, еще почти неуправляемый, пролетел около 100 м. Его жесткие композитные крылья приводились в движение небольшим двигателем с кривошипно-шатунной передачей. А спустя еще полгода усовершенствованная 29-килограммовая версия оставалась в воздухе уже столько времени, на сколько хватало полулитрового топливного бака — 10−15 минут. На свой махолет разработчики оформили патент РФ № 2488525.


Передние и задние крылья орнитоптера машут в противофазе. Это резко снижает колебания аппарата в полете и нагрузки, возникающие под действием инерции движущихся крыльев.

«Помимо прочего, мы столкнулись еще и с проблемой управления, — продолжает Андрей Мельник. — По вертикали махолет отклонялся и управлялся надежно, с помощью рулей высоты на хвостовом оперении. А вот чтобы менять курс еще и по горизонтали, нам пришлось установить на крыльях дополнительные законцовки. Меняя их положение, стало возможным полностью управлять аппаратом в полете, по радиоканалу».


Надо сказать, что вертикально махолет все-таки не взлетает, хотя для разбега ему требуется очень короткая полоса. Всего 5−10 м — и он уходит в отрыв. Эту цифру можно еще уменьшить, однако для создания настоящей полноразмерной модели конструкцию придется серьезно усовершенствовать. По словам Андрея Мельника, прежде всего требуется отказаться от кривошипно-шатунного механизма, не слишком удачного для создания машущих движений крыльями. Он порождает слишком опасные инерционные силы, которые особенно велики в верхней и нижней «мертвых точках» колебания. «Если мы возьмем другой привод, который способен накапливать энергию последних фаз движения и затем использовать ее для движения в обратном направлении, то он будет гораздо эффективнее, — говорит конструктор. — Это может быть, например, пневматический механизм, такие задумки у нас есть».

«Хуже всего то, что мы так и не понимаем в точности, как же он летает, — продолжает Андрей Мельник. — И по образованию, и по навыкам мы — практики, конструкторы, а не теоретики, не ученые. Но мы точно можем сказать, что обычные теоретические модели для махолета не подходят, и наши испытания это подтвердили. В частности, коэффициент подъемной силы у нас оказался в разы больше, чем у типичного самолетного крыла. Почему? Надеюсь, кто-нибудь разберется». Быть может, все действительно произойдет в обратном порядке: выяснив, как летает махолет, мы, наконец, разберемся и в машущем полете птиц и насекомых.

На фиг. 1 схематично показан махолет, общий вид; на фиг. 1 - винтовое соединение вала; на фиг.З - шарнирное соединение дисков с крыльями.
Предложенный махолет состоит из фюзеляжа 1, пар крыльев 2, 3 и 4, связанных с дисками 5, которые связаны с валом 6 через винтовое соединение 7 с большим шагом и при этом направление навивки винтовой линии для крыльев 2 и 4 одно, а для крыльев 3 - другое. И в каждой паре крыльев направление навивки тоже разное. Вал 6 находится в приводной части 8, состоящей (на чертеже не показано) из теплового двигателя, редуктора и механизма преобразования движения вала 6 возвратно- поступательно вдоль его оси без вращения дисков 5. С крыльями 2, 3 и 4 диски 5 связаны шарнирными соединениями 9, состоящими из втулки 10, содержащей вырез 11, в котором находится выступ 12, жестко связанный с валом 13. Между выступами 12 и радиальными стенками выреза 11 находятся пружины 14, работающие на сжатие. Имеются руль 15 высоты и руль 16 поворота.
Махолет работает следующим образом. Работает тепловой двигатель, на чертеже не показан. Вращение от него на вал 6 передается через редуктор и на механизм преобразования движения вала 6 в возвратно-поступательное без вращения, которые на чертеже не показаны, так как они применяются в широко известных исполнениях и предметом изобретения не являются. Поступательное движение вала 6 через винтовое соединение 7, показанное на фиг.2, заставляет вращаться крылья 2, 3 и 4 относительно оси вращения вала 6. Так как эти винтовые соединения 7 для крыльев одной пары имеют различные направления винтовой линии, то они вращаются навстречу друг другу. Кроме того по этой же причине, крылья 2 и 4 имеют это вращение, например мах вверх, то крылья 3 имеют противополодное вращение, мах вниз, а затем наоборот. Кроме того, выполнение крыльев 2, 3 и 4 через шарниры 9 заставляют крылья в самом начале маха вверх поворачиваться в шарнире 9 вниз, так как шарниры 9 расположены так, как это показано на фиг.1, гораздо ближе к передней части махолета, так как площадь взаимодействия крыльев с воздухом позади шарнира 9 гораздо больше, чем спереди. Размеры выреза 11 и жесткость пружин 14 позволяют крыльям 2, 3 и 4 по большей части перехода маха занимать положение под углом 20-70* (по отношению к направлению движения махолета) вниз, так как идет мах вверх. При этом от взаимодействия с сопротивлением воздуха возникает составляющая этой силы, направленная на создание направления движения вперед. При этом крылья 3 совершают мах вниз и создают подъемную силу для махолета, так как при этом сжатие пружин 14 обеспечивает почти параллельность крыльев 3 оси вала 6. Упомянутый выше угол 1-15*. И это обеспечивает нейтрализацию составляющей силы вниз маха вверх крыльев 2 и 4 от сопротивления воздуха. Это обеспечивает плавный полет махолета. Можно выполнять мой махолет с мускульным приводом и это будет уже сенсация и многие захотят купит себе или брать на прокат. Дело том, что мой махолет имеет конструктивные особенности, позволяющие ему летать очень устойчиво даже в ветреную погоду из-за того, что у него среднее сдвоенное крыло машет в одну строну, а 2 вторых переднее и заднее синхронно машут в другую сторону. При махе вниз крылья поворачиваются вертикально и мах из-за этого идет без нагрузки. Сами по себе махолеты требуют для своего полета меньше энергии, чем устройства с винтом, так как в них работает очень эффективно ПРАВИЛО МЕХАНИКИ клина: чем меньше угол клина, тем на больше расстояние продвигается клин, когда усилие на него производится по перпендикуляру к вектору его перемещения.

Мультикоптеры завоевывают мир и это не удивительно - четыре или больше двигателей, батарея и плата управления с гироскопом - что может быть проще и надежнее? В последнее время крупные компании такие, как Amazon, Google и DHL, занялись разработкой мультикоптеров для доставки посылок и мелких грузов на небольшие расстояния. Давайте попробуем разобраться, возможно ли это на практике и есть ли другой путь?

Безусловно, конструкция мультикоптеров проста, но у них есть и ряд серьезных недостатков. Первый, и главный - они не эффективны. Мы должны потратить весьма много электроэнергии для доставки одного килограмма груза, самолет бы справился с этой задачей на много эффективнее. Второй проблемой является шум - быстро вращающиеся винты создают неприятный свист, который сильно раздражает. Третьим недостатком является то, что чем больше винт, тем он эффективнее, поэтому мультикоптер всегда будет уступать одновинтовому вертолету той же мощности. И именно поэтому наш Ми-26 самый эффективный вертолет в мире.

Согласитесь, со всеми современными разговорами об экологии и важности энергоэффективности картина будущего, где в городском небе летают свистящие малоэффективные мультикоптеры, выглядит немного странно. Сама задача подсказывает ответ - нам нужен малошумный эффективный и надежный аппарат. Но существует ли он?

В мире не так много других решений задачи перевозки грузов по воздуху. Самый распространенный способ - самолет. Эффективен для доставки грузов благодаря своему высокому аэродинамическому качеству, но для посадки ему требуются длинные взлетно-посадочные полосы, что делает невозможным его использование для доставки грузов в черте города. Вертолеты, как и мультикоптеры очень эффективны на режиме висения, но крайне неэффективны в горизонтальном полете. Еще есть конвертопланы сочетающие в себе признаки самолета и вертолета - это достаточно сложные как в обслуживании, так и в пилотировании летательные аппараты, которые как правило, кроме плюсов сочетают в себе и минусы обоих родителей. Но есть еще один, незаслуженно забытый тип летательных аппаратов - орнитоптер, он же махолет. Если обратить внимание на птиц, насекомых и что они вытворяют в воздухе, то их механический аналог вполне подошел бы для решения задачи доставки грузов в черте населенных пунктов и не только. К тому же, орнитоптер сочетает в себе плюсы самолета и вертолета - он способен осуществлять горизонтальный полет с высоким качеством и при этом зависать и осуществлять вертикальные взлет и посадку.

Андрей Мельник

Исторически так сложилось, что махолет не нашел развития. На заре авиации он оказался слишком сложным и все попытки создать аппарат с машущим крылом были тщетными. Но сама мысль летать по-птичьему не оставляла умы ученых с самого зарождения авиации. Еще Жуковский, прародитель современной аэродинамики, неоднократно обращался к теории полета птиц, что стало основой всей современной аэродинамики. Однако, решив задачу парения, вихревой теории винта и крыла, Николай Егорович оставил проблему машущего крыла без должного внимания. Позже ее попытались решить в группе Михаила Тихонравова, одного из основоположников космической отрасли СССР, однако дальше общих теоретических выкладок дело не пошло, а с развитием самолетостроения интерес к машущему полету совсем угас.

Новая волна интереса к махолетам начинается в 80-х годах. В Советском Союзе и зарубежом публикуются статьи, связанные с исследованиями полета птиц, насекомых, древних ящеров и именно тогда появляется расхожая фраза: по законам аэродинамики шмель летать не может, но он их не знает и поэтому летает. Действительно, эти исследования породили главный вопрос: как именно реализуется машущий полет? Кульминацией стала попытка профессора Пола Маккриди из NASA создать копию гигантского птеродактиля, которая так и не смогла полететь, однако это не помешало предприимчивому профессору продать ее нью-йоркскому музею за три миллиона долларов. Неудача Маккриди в очередной раз снизила интерес к машущему полету, который опять стал выглядеть нереализуемым.

В это время на фоне новых исследований и неудач зарубежных коллег в Московском Авиационном институте создается Лаборатория машущего полета, которую активно поддерживает тогдашний руководитель ОКБ Сухого Михаил Симонов. В ходе многолетней работы команде удалось создать ряд легких летающих моделей, а так же заложить основы аэродинамики и динамики машущего полета. К 1993 году уже был спроектирован пилотируемый экспериментальный аппарат и даже выделена часть средств, но перестройка не щадила никого и проект заглох. Руководитель лаборатории профессор Валентин Киселев впоследствии неоднократно пытался поднять тему машущекрылых аппаратов, но попытки оказались тщетны, равно как и постройка 22-килограммовой модели.

В это время за рубежом лидером в постройке махолетов становится Торонтский университет. Команде под руководством Джеймса Делоуриера удалось добиться значительных успехов - в 2002 году они создали отлично летающую модель махолета весом в 3,5 килограмма. А в 2004 году уже был построен пилотируемый аппарат, который так и не смог оторваться от земли из-за малой мощности двигателя. Два года спустя на орнитоптер установили дополнительный небольшой реактивный двигатель, который все же позволил совершить полет, но через 300 метров пилот потерял управление и аппарат перевернулся. В 2010 году обновленная команда Торонтского университета создала первый пилотируемый махолет с мускульным приводом, который смог пролететь 19,3 секунд в горизонтальном полете только за счет сил пилота. Правда, аппарат сначала затянули на высоту как планер, и только затем пилот смог парить почти 20 секунд без потери высоты.

В 2011 году к проектированию нового аппарата приступили мы, молодая команда выпускников МАИ: Андрей Мельник и Дмитрий Шувалов. Поначалу проект строился на основании идей Киселева, так как это был единственный достойный теоретический базис в сфере орнитоптеров. Однако конструкторские решения, предложенные Валентином Афанасьевичем, показали свою неоправданность и неэффективность. В итоге мы решили кардинально пересмотреть конструкцию махолета в сторону обеспечения высокой надежности привода и возможности регулировки основных параметров в широком диапазоне значений. В основу расчета прочности узлов и соединений была положена теория Валентина Киселева о приоритете аэродинамических нагрузок над инерционными. К нашему большому сожалению, именно это предположение оказало на все развитие проекта эффект якоря, постоянно тормозя проект.


Андрей Мельник


Андрей Мельник


Андрей Мельник


Андрей Мельник

После сборки и испытаний первого варианта нового привода мы обнаружили, что расчетные значения нагрузок не совпадают с действительными, что, в свою очередь, приводит к быстрому износу механизмов привода. К тому, же само качество исполнения деталей привода сторонними изготовителями оказалось весьма низким, в сумме эти два фактора не позволили реализовать полет. После длительной доработки конструкции нам удалось добиться надежности привода, однако аппарат отказывался устойчиво летать, совершая лишь небольшие пролеты. К тому моменту я разработал основы аэродинамики махолета, что позволило провести оценку нагрузок и сделать выводы о проблемах полета. Дело в том, что значительная часть крыла махолета, если оно жесткое по кручению, находится в зоне вихревого обдувания и срыва потока, что сильно уменьшает подъемную силу аппарата. Тогда мы решенили создать новые секционные крылья, которые бы позволили улучшить аэродинамику аппарата. Это было интересное конструкторское решение, оно позволило разобраться в аэродинамике крыла, но не дало ожидаемого эффекта - аппарат никак не мог выйти на заданную частоту и постоянно ломался. Мы сохраняли верность теории о преобладании аэродинамических сил и искали какой-то новый эффект, но все оказалось проще.На очередных испытаниях аппарат достиг требуемой частоты, однако произошла поломка опорного подшипника, что явно указало на то, что усилия, действующие на этот узел, значительно превышают расчетные.

Разгадать загадку позволила, как ни странно, ошибка изготовителей: они не закалили кривошипы из алюминиевого сплава, что было некритично для расчетных нагрузок, но при реальном полете он деформировался и «запомнил», какие усилия его искорежили. Это позволило оценить место, где значение силы было максимальным и даже рассчитать ее значение - все указывало на то, что это инерционные динамические силы, значительно превышающие аэродинамические. Впоследствии эти данные позволили доказать, что нельзя создать махолет с механическим приводом массой более 42 килограммов, что поставило в тупик дальнейшие исследования.Тем не менее, обладая новой информацией, нам удалось перепроектировать аппарат, разобраться в расчетных нагрузках, аэродинамике и динамике полета. Это позволило создать модель массой 30 килограммов, которая хорошо летала и управлялась, но, тем не менее, не решала главную задачу - возможность строить аппараты большей размерности.


В 2013 году я получил грант от Фонда содействия малым формам предпринимательства в рамках программы «УМНИК», что позволило продолжить исследования аэродинамики и динамики полета махолетов. За два года научно-исследовательских работ удалось разработать принципиально иной подход к созданию машущекрылых аппаратов. Паразитные, ограничивающие масштаб инерционные нагрузки удалось использовать наоборот - для повышения эффективности маха. Фактически, в новой схеме крыло становится инерционным элементом физического маятника, совершая гармонические колебания, то накапливая кинетическую энергию, то отдавая ее пневмопружинам. А подвод энергии, необходимый для создания аэродинамических сил, выполняется за счет сжигания топлива и подвода сжатого газа в пневмопружины. Такое решение, теоретически, позволяет создавать аппараты практически любой размерности, а это уже принципиально иной уровень. Главное преимущество махолета над остальными летательными средствами это то, что он использует крыло для создания и подъемной силы, и тяги, убирая посредников в виде винта, редуктора и двигателя, который преобразует возвратно-поступательные движения во вращательные.